Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the domain and range of the parabola given by the equation [tex]\( y = 0.5(x^2 - 12x - 6) \)[/tex], we need to follow a series of steps.
1. Determine the Domain:
The domain of a quadratic function (parabola) is all real numbers because the quadratic function is defined for all [tex]\( x \)[/tex] values. Therefore, the domain is [tex]\( (-\infty, \infty) \)[/tex].
2. Determine the Range:
To find the range, we need to identify the vertex of the parabola, as it gives us the minimum or maximum value depending on the orientation of the parabola.
The standard form of a parabolic equation is [tex]\( y = ax^2 + bx + c \)[/tex].
For our equation [tex]\( y = 0.5(x^2 - 12x - 6) \)[/tex], we identify:
[tex]\[ a = 0.5, \quad b = -12, \quad c = -6 \][/tex]
The x-coordinate of the vertex [tex]\( h \)[/tex] can be found using the formula:
[tex]\[ h = -\frac{b}{2a} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ h = -\frac{-12}{2 \times 0.5} = \frac{12}{1} = 12 \][/tex]
To find the y-coordinate [tex]\( k \)[/tex] of the vertex, substitute [tex]\( x = 12 \)[/tex] into the original equation:
[tex]\[ y = 0.5(12^2 - 12 \cdot 12 - 6) \][/tex]
First, simplify inside the parentheses:
[tex]\[ 12^2 - 12 \cdot 12 - 6 = 144 - 144 - 6 = -6 \][/tex]
Then, multiply by 0.5:
[tex]\[ y = 0.5 \cdot (-6) = -78 \][/tex]
So the vertex is [tex]\( (12, -78) \)[/tex].
Since [tex]\( a > 0 \)[/tex] (0.5 in this case), the parabola opens upwards.
Thus, the range of the parabola is from the y-coordinate of the vertex to infinity:
[tex]\[ \text{Range} = [-78, \infty) \][/tex]
Summarizing, we have:
- Domain: [tex]\( (-\infty, \infty) \)[/tex]
- Range: [tex]\( [-78, \infty) \)[/tex]
From the provided options, the correct answer is:
[tex]\[ \boxed{D : (-\infty, \infty) \quad \text{;}\quad R:[-78, \infty)} \][/tex]
1. Determine the Domain:
The domain of a quadratic function (parabola) is all real numbers because the quadratic function is defined for all [tex]\( x \)[/tex] values. Therefore, the domain is [tex]\( (-\infty, \infty) \)[/tex].
2. Determine the Range:
To find the range, we need to identify the vertex of the parabola, as it gives us the minimum or maximum value depending on the orientation of the parabola.
The standard form of a parabolic equation is [tex]\( y = ax^2 + bx + c \)[/tex].
For our equation [tex]\( y = 0.5(x^2 - 12x - 6) \)[/tex], we identify:
[tex]\[ a = 0.5, \quad b = -12, \quad c = -6 \][/tex]
The x-coordinate of the vertex [tex]\( h \)[/tex] can be found using the formula:
[tex]\[ h = -\frac{b}{2a} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex]:
[tex]\[ h = -\frac{-12}{2 \times 0.5} = \frac{12}{1} = 12 \][/tex]
To find the y-coordinate [tex]\( k \)[/tex] of the vertex, substitute [tex]\( x = 12 \)[/tex] into the original equation:
[tex]\[ y = 0.5(12^2 - 12 \cdot 12 - 6) \][/tex]
First, simplify inside the parentheses:
[tex]\[ 12^2 - 12 \cdot 12 - 6 = 144 - 144 - 6 = -6 \][/tex]
Then, multiply by 0.5:
[tex]\[ y = 0.5 \cdot (-6) = -78 \][/tex]
So the vertex is [tex]\( (12, -78) \)[/tex].
Since [tex]\( a > 0 \)[/tex] (0.5 in this case), the parabola opens upwards.
Thus, the range of the parabola is from the y-coordinate of the vertex to infinity:
[tex]\[ \text{Range} = [-78, \infty) \][/tex]
Summarizing, we have:
- Domain: [tex]\( (-\infty, \infty) \)[/tex]
- Range: [tex]\( [-78, \infty) \)[/tex]
From the provided options, the correct answer is:
[tex]\[ \boxed{D : (-\infty, \infty) \quad \text{;}\quad R:[-78, \infty)} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.