Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the period of the function [tex]\( y = -2 \sin(3\pi x) \)[/tex], we need to consider the general form of a sine function, which is [tex]\( y = A \sin(Bx + C) + D \)[/tex]. In this function:
- [tex]\( A \)[/tex] represents the amplitude.
- [tex]\( B \)[/tex] affects the period of the function.
- [tex]\( C \)[/tex] represents the phase shift.
- [tex]\( D \)[/tex] represents the vertical shift.
The period of a sine function is determined by the coefficient [tex]\( B \)[/tex]. For a function in the form [tex]\( y = \sin(Bx) \)[/tex], the period [tex]\( T \)[/tex] is given by the formula:
[tex]\[ T = \frac{2\pi}{|B|} \][/tex]
In our specific function [tex]\( y = -2 \sin(3\pi x) \)[/tex], we have [tex]\( B = 3\pi \)[/tex].
Plug [tex]\( B = 3\pi \)[/tex] into the period formula:
[tex]\[ T = \frac{2\pi}{|3\pi|} \][/tex]
Calculate the absolute value of [tex]\( B \)[/tex]:
[tex]\[ |3\pi| = 3\pi \][/tex]
Now, substitute this value back into the formula:
[tex]\[ T = \frac{2\pi}{3\pi} \][/tex]
Simplify the fraction by canceling [tex]\(\pi\)[/tex] in the numerator and the denominator:
[tex]\[ T = \frac{2}{3} \][/tex]
Therefore, the period of the function [tex]\( y = -2 \sin(3\pi x) \)[/tex] is:
[tex]\[ \boxed{\frac{2}{3}} \][/tex]
- [tex]\( A \)[/tex] represents the amplitude.
- [tex]\( B \)[/tex] affects the period of the function.
- [tex]\( C \)[/tex] represents the phase shift.
- [tex]\( D \)[/tex] represents the vertical shift.
The period of a sine function is determined by the coefficient [tex]\( B \)[/tex]. For a function in the form [tex]\( y = \sin(Bx) \)[/tex], the period [tex]\( T \)[/tex] is given by the formula:
[tex]\[ T = \frac{2\pi}{|B|} \][/tex]
In our specific function [tex]\( y = -2 \sin(3\pi x) \)[/tex], we have [tex]\( B = 3\pi \)[/tex].
Plug [tex]\( B = 3\pi \)[/tex] into the period formula:
[tex]\[ T = \frac{2\pi}{|3\pi|} \][/tex]
Calculate the absolute value of [tex]\( B \)[/tex]:
[tex]\[ |3\pi| = 3\pi \][/tex]
Now, substitute this value back into the formula:
[tex]\[ T = \frac{2\pi}{3\pi} \][/tex]
Simplify the fraction by canceling [tex]\(\pi\)[/tex] in the numerator and the denominator:
[tex]\[ T = \frac{2}{3} \][/tex]
Therefore, the period of the function [tex]\( y = -2 \sin(3\pi x) \)[/tex] is:
[tex]\[ \boxed{\frac{2}{3}} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.