Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's solve the problem step-by-step.
Given that the baker makes apple tarts (denoted by [tex]\( t \)[/tex]) and apple pies (denoted by [tex]\( p \)[/tex]):
1. Each tart requires 1 apple.
2. Each pie requires 8 apples.
3. The baker receives a shipment of 184 apples every day.
4. The baker makes no more than 40 tarts per day.
We need to find a system of inequalities that models these constraints.
### Step 1: Total number of apples constraint
Each day, the baker can use at most 184 apples, utilized by tarts and pies. Therefore, the total apple usage is:
[tex]\[ p + 8t \leq 184 \][/tex]
### Step 2: Maximum tarts constraint
The baker can make no more than 40 tarts per day. Hence, the maximum number of tarts is:
[tex]\[ t \leq 40 \][/tex]
### Step 3: Pies and additional apples constraints
Additionally, if we rearrange the usage of apples to emphasize pies, another form of the inequality shows:
[tex]\[ 8p + t \leq 184 \][/tex]
### Summary
Therefore, the constraints can be summarized in the following system of inequalities, which best capture the baker's daily production limits:
[tex]\[ \begin{aligned} p + 8t & \leq 184 \\ t & \leq 40 \\ 8p + t & \leq 184 \end{aligned} \][/tex]
So, the correct system of inequalities that describes the possible number of pies and tarts the baker can make per day is:
[tex]\[ \begin{aligned} p+8t & \leq 184 \\ t & \leq 40 \\ 8p+t & \leq 184 \end{aligned} \][/tex]
Given that the baker makes apple tarts (denoted by [tex]\( t \)[/tex]) and apple pies (denoted by [tex]\( p \)[/tex]):
1. Each tart requires 1 apple.
2. Each pie requires 8 apples.
3. The baker receives a shipment of 184 apples every day.
4. The baker makes no more than 40 tarts per day.
We need to find a system of inequalities that models these constraints.
### Step 1: Total number of apples constraint
Each day, the baker can use at most 184 apples, utilized by tarts and pies. Therefore, the total apple usage is:
[tex]\[ p + 8t \leq 184 \][/tex]
### Step 2: Maximum tarts constraint
The baker can make no more than 40 tarts per day. Hence, the maximum number of tarts is:
[tex]\[ t \leq 40 \][/tex]
### Step 3: Pies and additional apples constraints
Additionally, if we rearrange the usage of apples to emphasize pies, another form of the inequality shows:
[tex]\[ 8p + t \leq 184 \][/tex]
### Summary
Therefore, the constraints can be summarized in the following system of inequalities, which best capture the baker's daily production limits:
[tex]\[ \begin{aligned} p + 8t & \leq 184 \\ t & \leq 40 \\ 8p + t & \leq 184 \end{aligned} \][/tex]
So, the correct system of inequalities that describes the possible number of pies and tarts the baker can make per day is:
[tex]\[ \begin{aligned} p+8t & \leq 184 \\ t & \leq 40 \\ 8p+t & \leq 184 \end{aligned} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.