Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Step-by-step explanation:
To solve the given problem, we start with the equation \( 29 \cos \theta = 21 \).
First, solve for \( \cos \theta \):
\[
\cos \theta = \frac{21}{29}
\]
Next, find \( \sin \theta \) using the Pythagorean identity:
\[
\sin^2 \theta + \cos^2 \theta = 1
\]
Substitute \( \cos \theta = \frac{21}{29} \):
\[
\sin^2 \theta + \left(\frac{21}{29}\right)^2 = 1
\]
\[
\sin^2 \theta + \frac{441}{841} = 1
\]
\[
\sin^2 \theta = 1 - \frac{441}{841}
\]
\[
\sin^2 \theta = \frac{841 - 441}{841}
\]
\[
\sin^2 \theta = \frac{400}{841}
\]
\[
\sin \theta = \sqrt{\frac{400}{841}} = \frac{20}{29}
\]
Now, calculate \( \tan \theta \):
\[
\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{20}{29}}{\frac{21}{29}} = \frac{20}{21}
\]
Next, find \( \sin \theta - \tan \theta \):
\[
\sin \theta - \tan \theta = \frac{20}{29} - \frac{20}{21}
\]
To subtract these fractions, find a common denominator:
\[
\sin \theta - \tan \theta = \frac{20 \cdot 21 - 20 \cdot 29}{29 \cdot 21} = \frac{420 - 580}{609} = \frac{-160}{609}
\]
Finally, find \( \frac{1}{\sin \theta - \tan \theta} \):
\[
\frac{1}{\sin \theta - \tan \theta} = \frac{1}{\frac{-160}{609}} = \frac{609}{-160} = -\frac{609}{160}
\]
Therefore, the value of \( \frac{1}{\sin \theta - \tan \theta} \) is \( \boxed{-\frac{609}{160}} \).
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.