Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's carefully examine each step of solving the system of linear equations to determine where Michael made his first error.
We start with the system of equations:
[tex]\[ \begin{aligned} 3x - 3y &= 6 \quad \text{(Equation 1)}\\ 4x - 7y &= 2 \quad \text{(Equation 2)} \end{aligned} \][/tex]
Step 1: Multiply the equations to eliminate [tex]\( x \)[/tex].
Multiply Equation 1 by 4:
[tex]\[ 4(3x - 3y) = 4(6) \implies 12x - 12y = 24 \][/tex]
Multiply Equation 2 by -3:
[tex]\[ -3(4x - 7y) = -3(2) \implies -12x + 21y = -6 \][/tex]
This step is correct. Let's move on to Step 2.
Step 2: Add the two equations to eliminate [tex]\( x \)[/tex].
[tex]\[ \begin{aligned} 12x - 12y &= 24 \quad \text{(Equation 3)}\\ -12x + 21y &= -6 \quad \text{(Equation 4)} \end{aligned} \][/tex]
Adding Equation 3 and Equation 4:
[tex]\[ (12x - 12y) + (-12x + 21y) = 24 + (-6) \implies 9y = 18 \][/tex]
This step should yield:
[tex]\[ 9y = 18 \implies y = 2 \][/tex]
Michael, however, showed:
[tex]\[ -33y = 30 \][/tex]
This means Michael made an error in Step 2.
Given that:
- The incorrect intermediate value for [tex]\( y \)[/tex] was [tex]\( -\frac{10}{11} \)[/tex],
- The correct value for [tex]\( y \)[/tex] from the corrected steps is [tex]\( 2 \)[/tex],
- The correct further substitution for [tex]\( x \)[/tex],
The error occurred in Step 2 when combining Equations 3 and 4. Therefore, Michael's first error happened in Step 2.
We start with the system of equations:
[tex]\[ \begin{aligned} 3x - 3y &= 6 \quad \text{(Equation 1)}\\ 4x - 7y &= 2 \quad \text{(Equation 2)} \end{aligned} \][/tex]
Step 1: Multiply the equations to eliminate [tex]\( x \)[/tex].
Multiply Equation 1 by 4:
[tex]\[ 4(3x - 3y) = 4(6) \implies 12x - 12y = 24 \][/tex]
Multiply Equation 2 by -3:
[tex]\[ -3(4x - 7y) = -3(2) \implies -12x + 21y = -6 \][/tex]
This step is correct. Let's move on to Step 2.
Step 2: Add the two equations to eliminate [tex]\( x \)[/tex].
[tex]\[ \begin{aligned} 12x - 12y &= 24 \quad \text{(Equation 3)}\\ -12x + 21y &= -6 \quad \text{(Equation 4)} \end{aligned} \][/tex]
Adding Equation 3 and Equation 4:
[tex]\[ (12x - 12y) + (-12x + 21y) = 24 + (-6) \implies 9y = 18 \][/tex]
This step should yield:
[tex]\[ 9y = 18 \implies y = 2 \][/tex]
Michael, however, showed:
[tex]\[ -33y = 30 \][/tex]
This means Michael made an error in Step 2.
Given that:
- The incorrect intermediate value for [tex]\( y \)[/tex] was [tex]\( -\frac{10}{11} \)[/tex],
- The correct value for [tex]\( y \)[/tex] from the corrected steps is [tex]\( 2 \)[/tex],
- The correct further substitution for [tex]\( x \)[/tex],
The error occurred in Step 2 when combining Equations 3 and 4. Therefore, Michael's first error happened in Step 2.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.