Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's carefully examine each step of solving the system of linear equations to determine where Michael made his first error.
We start with the system of equations:
[tex]\[ \begin{aligned} 3x - 3y &= 6 \quad \text{(Equation 1)}\\ 4x - 7y &= 2 \quad \text{(Equation 2)} \end{aligned} \][/tex]
Step 1: Multiply the equations to eliminate [tex]\( x \)[/tex].
Multiply Equation 1 by 4:
[tex]\[ 4(3x - 3y) = 4(6) \implies 12x - 12y = 24 \][/tex]
Multiply Equation 2 by -3:
[tex]\[ -3(4x - 7y) = -3(2) \implies -12x + 21y = -6 \][/tex]
This step is correct. Let's move on to Step 2.
Step 2: Add the two equations to eliminate [tex]\( x \)[/tex].
[tex]\[ \begin{aligned} 12x - 12y &= 24 \quad \text{(Equation 3)}\\ -12x + 21y &= -6 \quad \text{(Equation 4)} \end{aligned} \][/tex]
Adding Equation 3 and Equation 4:
[tex]\[ (12x - 12y) + (-12x + 21y) = 24 + (-6) \implies 9y = 18 \][/tex]
This step should yield:
[tex]\[ 9y = 18 \implies y = 2 \][/tex]
Michael, however, showed:
[tex]\[ -33y = 30 \][/tex]
This means Michael made an error in Step 2.
Given that:
- The incorrect intermediate value for [tex]\( y \)[/tex] was [tex]\( -\frac{10}{11} \)[/tex],
- The correct value for [tex]\( y \)[/tex] from the corrected steps is [tex]\( 2 \)[/tex],
- The correct further substitution for [tex]\( x \)[/tex],
The error occurred in Step 2 when combining Equations 3 and 4. Therefore, Michael's first error happened in Step 2.
We start with the system of equations:
[tex]\[ \begin{aligned} 3x - 3y &= 6 \quad \text{(Equation 1)}\\ 4x - 7y &= 2 \quad \text{(Equation 2)} \end{aligned} \][/tex]
Step 1: Multiply the equations to eliminate [tex]\( x \)[/tex].
Multiply Equation 1 by 4:
[tex]\[ 4(3x - 3y) = 4(6) \implies 12x - 12y = 24 \][/tex]
Multiply Equation 2 by -3:
[tex]\[ -3(4x - 7y) = -3(2) \implies -12x + 21y = -6 \][/tex]
This step is correct. Let's move on to Step 2.
Step 2: Add the two equations to eliminate [tex]\( x \)[/tex].
[tex]\[ \begin{aligned} 12x - 12y &= 24 \quad \text{(Equation 3)}\\ -12x + 21y &= -6 \quad \text{(Equation 4)} \end{aligned} \][/tex]
Adding Equation 3 and Equation 4:
[tex]\[ (12x - 12y) + (-12x + 21y) = 24 + (-6) \implies 9y = 18 \][/tex]
This step should yield:
[tex]\[ 9y = 18 \implies y = 2 \][/tex]
Michael, however, showed:
[tex]\[ -33y = 30 \][/tex]
This means Michael made an error in Step 2.
Given that:
- The incorrect intermediate value for [tex]\( y \)[/tex] was [tex]\( -\frac{10}{11} \)[/tex],
- The correct value for [tex]\( y \)[/tex] from the corrected steps is [tex]\( 2 \)[/tex],
- The correct further substitution for [tex]\( x \)[/tex],
The error occurred in Step 2 when combining Equations 3 and 4. Therefore, Michael's first error happened in Step 2.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.