At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

In a discrete data set, the number of observations is 30 and Σfx is 750.

(a) What does Σf mean?

(b) Find the arithmetic mean (AM) of the given data.

(c) To maintain the AM, what should be removed from Σf if 250 is subtracted from Σfx?

(d) Find the changed percentage in AM if 10 observations were omitted from the data.


Sagot :

Certainly! Let's address each part of the question step-by-step:

### (a) What do you mean by Σf?
In statistics, Σf represents the sum of the frequencies (total number of observations) in a dataset. It is denoted as "n." Essentially, it indicates how many data points or observations are there in total.

### (b) Find the arithmetic mean (AM) of the given data.
To find the arithmetic mean (AM) of the data, you use the formula:
[tex]\[ \text{AM} = \frac{\Sigma fx}{n} \][/tex]
Given:
- Σfx (the sum of the product of frequencies and corresponding values) = 750
- n (number of observations) = 30

Plug these values into the formula:
[tex]\[ \text{AM} = \frac{750}{30} = 25.0 \][/tex]

### (c) To maintain the AM, what should be removed from Σf if 250 is subtracted from Σfx?
If 250 is subtracted from Σfx, and we want to maintain the same arithmetic mean of 25.0, we need to ensure that Σf remains the same since AM should not change.

New sum of products:
[tex]\[ \text{New Σfx} = 750 - 250 = 500 \][/tex]

To maintain the same AM, Σf should remain:
[tex]\[ \Sigma f = n = 30 \][/tex]

Thus, nothing should be removed from the total number of observations, which remains 30.

### (d) Find the changed percentage in AM if 10 observations were omitted in data.
If 10 observations are omitted, the new number of observations [tex]\( n' \)[/tex] is:
[tex]\[ n' = 30 - 10 = 20 \][/tex]

The original arithmetic mean calculated was 25.0. Now, we need to find the new arithmetic mean given that Σfx remains 750 but with only 20 observations:
[tex]\[ \text{New AM} = \frac{\Sigma fx}{n'} = \frac{750}{20} = 37.5 \][/tex]

To find the percentage change in AM:
[tex]\[ \text{Percentage Change} = \left( \frac{\text{New AM} - \text{Original AM}}{\text{Original AM}} \right) \times 100 \][/tex]
[tex]\[ \text{Percentage Change} = \left( \frac{37.5 - 25.0}{25.0} \right) \times 100 = 50.0\% \][/tex]

So, the arithmetic mean increases by 50.0% when 10 observations are omitted.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.