Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Considering the data set [tex]\(10, 30, 40, 50, 60, p, 90\)[/tex], with an average of 50:

(a) How do you calculate the number of items ([tex]\(n\)[/tex]) given the sum of items ([tex]\(\Sigma x\)[/tex]) and average ([tex]\(\bar{x}\)[/tex])?
(b) Determine the total number of data items.
(c) Find the value of [tex]\(p\)[/tex].
(d) If 20 and 80 are added to the data, what is the new average?

Sagot :

Certainly! Let's go through the problem step-by-step:

Given data set: [tex]\(10, 30, 40, 50, 60, p, 90\)[/tex]

Average of this data set: 50

### (a) Calculating the Number of Items [tex]\(n\)[/tex]
The formula for the average [tex]\(\bar{x}\)[/tex] is given by:
[tex]\[ \bar{x} = \frac{\Sigma x}{n} \][/tex]

Where [tex]\(\Sigma x\)[/tex] is the sum of all items and [tex]\(n\)[/tex] is the number of items.

Rearranging this formula to find [tex]\(n\)[/tex] we get:
[tex]\[ n = \frac{\Sigma x}{\bar{x}} \][/tex]

### (b) Determining the Total Number of Data Items
Counting the items in the given data set:
[tex]\[ 10, 30, 40, 50, 60, p, 90 \][/tex]

There are a total of 7 items including the unknown [tex]\(p\)[/tex]. So, [tex]\( n = 7 \)[/tex].

### (c) Finding the Value of [tex]\(p\)[/tex]
Given the average of the data set is 50, we use the average formula:
[tex]\[ \bar{x} = \frac{\Sigma x}{n} \][/tex]

Substitute the known values:
[tex]\[ 50 = \frac{10 + 30 + 40 + 50 + 60 + p + 90}{7} \][/tex]

Let's find the sum of the known values first:
[tex]\[ 10 + 30 + 40 + 50 + 60 + 90 = 280 \][/tex]

Now, substituting this into the equation, we have:
[tex]\[ 50 = \frac{280 + p}{7} \][/tex]

Multiply both sides by 7 to clear the fraction:
[tex]\[ 350 = 280 + p \][/tex]

Solving for [tex]\(p\)[/tex]:
[tex]\[ p = 350 - 280 \][/tex]
[tex]\[ p = 70 \][/tex]

### (d) New Average After Adding 20 and 80
The new data set will be:
[tex]\[ 10, 30, 40, 50, 60, 70, 90, 20, 80 \][/tex]

The total number of items now is:
[tex]\[ n = 9 \][/tex]

We need to find the sum of the new data set:
[tex]\[ \Sigma x = 10 + 30 + 40 + 50 + 60 + 70 + 90 + 20 + 80 \][/tex]

Calculating the sum:
[tex]\[ \Sigma x = 450 \][/tex]

Now we find the new average:
[tex]\[ \text{New Average} = \frac{\Sigma x}{n} \][/tex]
[tex]\[ \text{New Average} = \frac{450}{9} \][/tex]
[tex]\[ \text{New Average} = 50 \][/tex]

So, the detailed step-by-step solutions are:
1. There are 7 items in the original data set.
2. The total number of data items is [tex]\(7\)[/tex].
3. The value of [tex]\(p\)[/tex] is [tex]\(70\)[/tex].
4. After adding 20 and 80 to the data, the new average remains [tex]\(50\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.