Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To address the question about the exponential function [tex]\( f(x) = 2^x \)[/tex], let's carefully evaluate Geraldine's statements and her conclusion.
Statement 1:
Geraldine states that "as [tex]\( x \)[/tex] increases infinitely, the [tex]\( y \)[/tex]-values are continually doubled for each single increase in [tex]\( x \)[/tex]."
- To verify this, we observe that:
[tex]\[ f(x+1) = 2^{x+1} = 2 \cdot 2^x = 2 \cdot f(x) \][/tex]
This indicates that for each increase of 1 in [tex]\( x \)[/tex], [tex]\( f(x) \)[/tex] (the [tex]\( y \)[/tex]-value) does indeed get doubled. Therefore, Statement 1 is correct.
Statement 2:
Geraldine also states that "as [tex]\( x \)[/tex] decreases infinitely, the [tex]\( y \)[/tex]-values are continually halved for each single decrease in [tex]\( x \)[/tex]."
- To verify this, we observe that:
[tex]\[ f(x-1) = 2^{x-1} = \frac{2^x}{2} = \frac{f(x)}{2} \][/tex]
This indicates that for each decrease of 1 in [tex]\( x \)[/tex], [tex]\( f(x) \)[/tex] (the [tex]\( y \)[/tex]-value) gets halved. Therefore, Statement 2 is also correct.
Conclusion:
Geraldine concludes that "there are no limits within the set of real numbers on the range of this exponential function."
- To clarify this, we need to review the characteristics of the range of the function [tex]\( f(x) = 2^x \)[/tex]. The range of [tex]\( f(x) = 2^x \)[/tex] includes all positive real numbers. This is because as [tex]\( x \)[/tex] approaches positive infinity, [tex]\( 2^x \)[/tex] grows without bound, and as [tex]\( x \)[/tex] approaches negative infinity, [tex]\( 2^x \)[/tex] approaches 0 but never reaches 0. Therefore, the range is all positive real numbers.
Combining these findings:
1. Statement 1 is correct.
2. Statement 2 is correct.
3. Geraldine's conclusion is incorrect because the range of [tex]\( f(x) = 2^x \)[/tex] is limited to the set of positive real numbers, not all real numbers.
Therefore, the best explanation is:
- The conclusion is incorrect because the range is limited to the set of positive real numbers.
Statement 1:
Geraldine states that "as [tex]\( x \)[/tex] increases infinitely, the [tex]\( y \)[/tex]-values are continually doubled for each single increase in [tex]\( x \)[/tex]."
- To verify this, we observe that:
[tex]\[ f(x+1) = 2^{x+1} = 2 \cdot 2^x = 2 \cdot f(x) \][/tex]
This indicates that for each increase of 1 in [tex]\( x \)[/tex], [tex]\( f(x) \)[/tex] (the [tex]\( y \)[/tex]-value) does indeed get doubled. Therefore, Statement 1 is correct.
Statement 2:
Geraldine also states that "as [tex]\( x \)[/tex] decreases infinitely, the [tex]\( y \)[/tex]-values are continually halved for each single decrease in [tex]\( x \)[/tex]."
- To verify this, we observe that:
[tex]\[ f(x-1) = 2^{x-1} = \frac{2^x}{2} = \frac{f(x)}{2} \][/tex]
This indicates that for each decrease of 1 in [tex]\( x \)[/tex], [tex]\( f(x) \)[/tex] (the [tex]\( y \)[/tex]-value) gets halved. Therefore, Statement 2 is also correct.
Conclusion:
Geraldine concludes that "there are no limits within the set of real numbers on the range of this exponential function."
- To clarify this, we need to review the characteristics of the range of the function [tex]\( f(x) = 2^x \)[/tex]. The range of [tex]\( f(x) = 2^x \)[/tex] includes all positive real numbers. This is because as [tex]\( x \)[/tex] approaches positive infinity, [tex]\( 2^x \)[/tex] grows without bound, and as [tex]\( x \)[/tex] approaches negative infinity, [tex]\( 2^x \)[/tex] approaches 0 but never reaches 0. Therefore, the range is all positive real numbers.
Combining these findings:
1. Statement 1 is correct.
2. Statement 2 is correct.
3. Geraldine's conclusion is incorrect because the range of [tex]\( f(x) = 2^x \)[/tex] is limited to the set of positive real numbers, not all real numbers.
Therefore, the best explanation is:
- The conclusion is incorrect because the range is limited to the set of positive real numbers.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.