Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the area of a regular hexagon with an apothem of [tex]\( 3.5 \, \text{cm} \)[/tex] and a side length of [tex]\( 4 \, \text{cm} \)[/tex], follow these steps:
1. Determine the perimeter of the hexagon:
- A regular hexagon has 6 sides.
- Each side length is [tex]\( 4 \, \text{cm} \)[/tex].
- The perimeter [tex]\( P \)[/tex] of the hexagon is calculated by multiplying the number of sides by the length of each side:
[tex]\[ P = 6 \times 4 \, \text{cm} = 24 \, \text{cm} \][/tex]
2. Use the formula for the area of a regular hexagon:
- The area [tex]\( A \)[/tex] of a regular hexagon can be found using the formula:
[tex]\[ A = \frac{1}{2} \times \text{Perimeter} \times \text{Apothem} \][/tex]
- Substitute the known values into the formula:
[tex]\[ A = \frac{1}{2} \times 24 \, \text{cm} \times 3.5 \, \text{cm} \][/tex]
3. Perform the multiplication:
- First, multiply the perimeter by the apothem:
[tex]\[ 24 \, \text{cm} \times 3.5 \, \text{cm} = 84 \, \text{cm}^2 \][/tex]
- Then, multiply the result by [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ \frac{1}{2} \times 84 \, \text{cm}^2 = 42 \, \text{cm}^2 \][/tex]
Thus, the area of the regular hexagon is [tex]\( 42 \, \text{cm}^2 \)[/tex].
1. Determine the perimeter of the hexagon:
- A regular hexagon has 6 sides.
- Each side length is [tex]\( 4 \, \text{cm} \)[/tex].
- The perimeter [tex]\( P \)[/tex] of the hexagon is calculated by multiplying the number of sides by the length of each side:
[tex]\[ P = 6 \times 4 \, \text{cm} = 24 \, \text{cm} \][/tex]
2. Use the formula for the area of a regular hexagon:
- The area [tex]\( A \)[/tex] of a regular hexagon can be found using the formula:
[tex]\[ A = \frac{1}{2} \times \text{Perimeter} \times \text{Apothem} \][/tex]
- Substitute the known values into the formula:
[tex]\[ A = \frac{1}{2} \times 24 \, \text{cm} \times 3.5 \, \text{cm} \][/tex]
3. Perform the multiplication:
- First, multiply the perimeter by the apothem:
[tex]\[ 24 \, \text{cm} \times 3.5 \, \text{cm} = 84 \, \text{cm}^2 \][/tex]
- Then, multiply the result by [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ \frac{1}{2} \times 84 \, \text{cm}^2 = 42 \, \text{cm}^2 \][/tex]
Thus, the area of the regular hexagon is [tex]\( 42 \, \text{cm}^2 \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.