Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine why the limit does not exist for the expression [tex]\(\lim _{x \rightarrow 0} \frac{x}{|x|}\)[/tex], let's analyze the behavior of the function as [tex]\(x\)[/tex] approaches [tex]\(0\)[/tex] from the left and the right.
### Analyzing the Behavior:
1. As [tex]\(x\)[/tex] approaches 0 from the left [tex]\((x \rightarrow 0^-)\)[/tex]:
- When [tex]\(x\)[/tex] is slightly negative, [tex]\(|x| = -x\)[/tex].
- Therefore, [tex]\(\frac{x}{|x|} = \frac{x}{-x} = -1\)[/tex].
- As [tex]\(x\)[/tex] approaches [tex]\(0\)[/tex] from the left, [tex]\(\frac{x}{|x|}\)[/tex] approaches [tex]\(-1\)[/tex].
2. As [tex]\(x\)[/tex] approaches 0 from the right [tex]\((x \rightarrow 0^+)\)[/tex]:
- When [tex]\(x\)[/tex] is slightly positive, [tex]\(|x| = x\)[/tex].
- Therefore, [tex]\(\frac{x}{|x|} = \frac{x}{x} = 1\)[/tex].
- As [tex]\(x\)[/tex] approaches [tex]\(0\)[/tex] from the right, [tex]\(\frac{x}{|x|}\)[/tex] approaches [tex]\(1\)[/tex].
### Conclusion:
Since the values that [tex]\(\frac{x}{|x|}\)[/tex] approaches are different from the left and the right, there is no single number [tex]\(L\)[/tex] that the function values get arbitrarily close to as [tex]\(x\)[/tex] approaches [tex]\(0\)[/tex].
Hence, the correct choice is:
A. As [tex]\(x\)[/tex] approaches 0 from the left, [tex]\(\frac{x}{|x|}\)[/tex] approaches [tex]\(-1\)[/tex]. As [tex]\(x\)[/tex] approaches 0 from the right, [tex]\(\frac{x}{|x|}\)[/tex] approaches [tex]\(1\)[/tex]. This means there is no single number [tex]\(L\)[/tex] that the function values get arbitrarily close to as [tex]\(x \rightarrow 0\)[/tex].
### Analyzing the Behavior:
1. As [tex]\(x\)[/tex] approaches 0 from the left [tex]\((x \rightarrow 0^-)\)[/tex]:
- When [tex]\(x\)[/tex] is slightly negative, [tex]\(|x| = -x\)[/tex].
- Therefore, [tex]\(\frac{x}{|x|} = \frac{x}{-x} = -1\)[/tex].
- As [tex]\(x\)[/tex] approaches [tex]\(0\)[/tex] from the left, [tex]\(\frac{x}{|x|}\)[/tex] approaches [tex]\(-1\)[/tex].
2. As [tex]\(x\)[/tex] approaches 0 from the right [tex]\((x \rightarrow 0^+)\)[/tex]:
- When [tex]\(x\)[/tex] is slightly positive, [tex]\(|x| = x\)[/tex].
- Therefore, [tex]\(\frac{x}{|x|} = \frac{x}{x} = 1\)[/tex].
- As [tex]\(x\)[/tex] approaches [tex]\(0\)[/tex] from the right, [tex]\(\frac{x}{|x|}\)[/tex] approaches [tex]\(1\)[/tex].
### Conclusion:
Since the values that [tex]\(\frac{x}{|x|}\)[/tex] approaches are different from the left and the right, there is no single number [tex]\(L\)[/tex] that the function values get arbitrarily close to as [tex]\(x\)[/tex] approaches [tex]\(0\)[/tex].
Hence, the correct choice is:
A. As [tex]\(x\)[/tex] approaches 0 from the left, [tex]\(\frac{x}{|x|}\)[/tex] approaches [tex]\(-1\)[/tex]. As [tex]\(x\)[/tex] approaches 0 from the right, [tex]\(\frac{x}{|x|}\)[/tex] approaches [tex]\(1\)[/tex]. This means there is no single number [tex]\(L\)[/tex] that the function values get arbitrarily close to as [tex]\(x \rightarrow 0\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.