Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the function [tex]\( r(t) \)[/tex] given that [tex]\( r'(t) = 3 t^2 \mathbf{i} + 7 t^6 \mathbf{j} + \sqrt{t} \mathbf{k} \)[/tex] and the initial condition [tex]\( r(1) = \mathbf{i} + \mathbf{j} \)[/tex], follow these steps:
1. Integrate each component of [tex]\( r'(t) \)[/tex] to find [tex]\( r(t) \)[/tex]:
- For the [tex]\( \mathbf{i} \)[/tex] component:
[tex]\[ \int 3 t^2 \, dt = t^3 + C_1 \][/tex]
- For the [tex]\( \mathbf{j} \)[/tex] component:
[tex]\[ \int 7 t^6 \, dt = t^7 + C_2 \][/tex]
- For the [tex]\( \mathbf{k} \)[/tex] component:
[tex]\[ \int \sqrt{t} \, dt = \int t^{1/2} \, dt = \frac{2}{3} t^{3/2} + C_3 \][/tex]
Therefore, the general form of [tex]\( r(t) \)[/tex] before applying the initial conditions is:
[tex]\[ r(t) = (t^3 + C_1) \mathbf{i} + (t^7 + C_2) \mathbf{j} + \left( \frac{2}{3} t^{3/2} + C_3 \right) \mathbf{k} \][/tex]
2. Apply the initial condition [tex]\( r(1) = \mathbf{i} + \mathbf{j} \)[/tex]:
[tex]\[ r(1) = (\mathbf{i}, \mathbf{j}, \mathbf{k}) = (1, 1, 0) \][/tex]
Substitute [tex]\( t = 1 \)[/tex] into [tex]\( r(t) \)[/tex] and set it equal to the initial condition [tex]\( (1, 1, 0) \)[/tex]:
- For the [tex]\(\mathbf{i}\)[/tex] component:
[tex]\[ 1^3 + C_1 = 1 \implies 1 + C_1 = 1 \implies C_1 = 0 \][/tex]
- For the [tex]\(\mathbf{j}\)[/tex] component:
[tex]\[ 1^7 + C_2 = 1 \implies 1 + C_2 = 1 \implies C_2 = 0 \][/tex]
- For the [tex]\(\mathbf{k}\)[/tex] component:
[tex]\[ \frac{2}{3} \cdot 1^{3/2} + C_3 = 0 \implies \frac{2}{3} + C_3 = 0 \implies C_3 = -\frac{2}{3} \][/tex]
3. Substitute these constants back into [tex]\( r(t) \)[/tex]:
Incorporate [tex]\( C_1 = 0 \)[/tex], [tex]\( C_2 = 0 \)[/tex], and [tex]\( C_3 = -\frac{2}{3} \)[/tex] into the expression for [tex]\( r(t) \)[/tex]:
[tex]\[ r(t) = t^3 \mathbf{i} + t^7 \mathbf{j} + \left( \frac{2}{3} t^{3/2} - \frac{2}{3} \right) \mathbf{k} \][/tex]
Thus, the function [tex]\( r(t) \)[/tex] is:
[tex]\[ r(t) = t^3 \mathbf{i} + t^7 \mathbf{j} + \left( \frac{2}{3} t^{3/2} - \frac{2}{3} \right) \mathbf{k} \][/tex]
1. Integrate each component of [tex]\( r'(t) \)[/tex] to find [tex]\( r(t) \)[/tex]:
- For the [tex]\( \mathbf{i} \)[/tex] component:
[tex]\[ \int 3 t^2 \, dt = t^3 + C_1 \][/tex]
- For the [tex]\( \mathbf{j} \)[/tex] component:
[tex]\[ \int 7 t^6 \, dt = t^7 + C_2 \][/tex]
- For the [tex]\( \mathbf{k} \)[/tex] component:
[tex]\[ \int \sqrt{t} \, dt = \int t^{1/2} \, dt = \frac{2}{3} t^{3/2} + C_3 \][/tex]
Therefore, the general form of [tex]\( r(t) \)[/tex] before applying the initial conditions is:
[tex]\[ r(t) = (t^3 + C_1) \mathbf{i} + (t^7 + C_2) \mathbf{j} + \left( \frac{2}{3} t^{3/2} + C_3 \right) \mathbf{k} \][/tex]
2. Apply the initial condition [tex]\( r(1) = \mathbf{i} + \mathbf{j} \)[/tex]:
[tex]\[ r(1) = (\mathbf{i}, \mathbf{j}, \mathbf{k}) = (1, 1, 0) \][/tex]
Substitute [tex]\( t = 1 \)[/tex] into [tex]\( r(t) \)[/tex] and set it equal to the initial condition [tex]\( (1, 1, 0) \)[/tex]:
- For the [tex]\(\mathbf{i}\)[/tex] component:
[tex]\[ 1^3 + C_1 = 1 \implies 1 + C_1 = 1 \implies C_1 = 0 \][/tex]
- For the [tex]\(\mathbf{j}\)[/tex] component:
[tex]\[ 1^7 + C_2 = 1 \implies 1 + C_2 = 1 \implies C_2 = 0 \][/tex]
- For the [tex]\(\mathbf{k}\)[/tex] component:
[tex]\[ \frac{2}{3} \cdot 1^{3/2} + C_3 = 0 \implies \frac{2}{3} + C_3 = 0 \implies C_3 = -\frac{2}{3} \][/tex]
3. Substitute these constants back into [tex]\( r(t) \)[/tex]:
Incorporate [tex]\( C_1 = 0 \)[/tex], [tex]\( C_2 = 0 \)[/tex], and [tex]\( C_3 = -\frac{2}{3} \)[/tex] into the expression for [tex]\( r(t) \)[/tex]:
[tex]\[ r(t) = t^3 \mathbf{i} + t^7 \mathbf{j} + \left( \frac{2}{3} t^{3/2} - \frac{2}{3} \right) \mathbf{k} \][/tex]
Thus, the function [tex]\( r(t) \)[/tex] is:
[tex]\[ r(t) = t^3 \mathbf{i} + t^7 \mathbf{j} + \left( \frac{2}{3} t^{3/2} - \frac{2}{3} \right) \mathbf{k} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.