Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Select the correct answer.

Simplify:

[tex]\(\sqrt{147}\)[/tex]

A. [tex]\(21 \sqrt{7}\)[/tex]

B. [tex]\(49 \sqrt{3}\)[/tex]

C. [tex]\(7 \sqrt{3}\)[/tex]

D. [tex]\(3 \sqrt{7}\)[/tex]


Sagot :

To simplify [tex]\(\sqrt{147}\)[/tex], let's follow a step-by-step approach.

1. Prime Factorization of 147:
- We can start by breaking down the number 147 using its prime factors.
- 147 can be divided by 3 (since the sum of its digits, 1+4+7 = 12, is divisible by 3):
[tex]\[ 147 \div 3 = 49 \][/tex]
- Next, 49 is a perfect square:
[tex]\[ 49 = 7 \times 7 \][/tex]
- So, the prime factorization of 147 is:
[tex]\[ 147 = 3 \times 7 \times 7 = 3 \times 7^2 \][/tex]

2. Applying the Square Root:
- Using the property of square roots, we can rewrite [tex]\(\sqrt{147}\)[/tex] as:
[tex]\[ \sqrt{147} = \sqrt{3 \times 7^2} \][/tex]
- We can separate the square root over the factors:
[tex]\[ \sqrt{3 \times 7^2} = \sqrt{3} \times \sqrt{7^2} \][/tex]
- Since [tex]\(\sqrt{7^2} = 7\)[/tex], this simplifies to:
[tex]\[ \sqrt{3} \times 7 = 7 \sqrt{3} \][/tex]

Therefore, the simplified form of [tex]\(\sqrt{147}\)[/tex] is [tex]\(7 \sqrt{3}\)[/tex].

The correct answer is:
C. [tex]\(7 \sqrt{3}\)[/tex]