Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To simplify [tex]\(\sqrt{147}\)[/tex], let's follow a step-by-step approach.
1. Prime Factorization of 147:
- We can start by breaking down the number 147 using its prime factors.
- 147 can be divided by 3 (since the sum of its digits, 1+4+7 = 12, is divisible by 3):
[tex]\[ 147 \div 3 = 49 \][/tex]
- Next, 49 is a perfect square:
[tex]\[ 49 = 7 \times 7 \][/tex]
- So, the prime factorization of 147 is:
[tex]\[ 147 = 3 \times 7 \times 7 = 3 \times 7^2 \][/tex]
2. Applying the Square Root:
- Using the property of square roots, we can rewrite [tex]\(\sqrt{147}\)[/tex] as:
[tex]\[ \sqrt{147} = \sqrt{3 \times 7^2} \][/tex]
- We can separate the square root over the factors:
[tex]\[ \sqrt{3 \times 7^2} = \sqrt{3} \times \sqrt{7^2} \][/tex]
- Since [tex]\(\sqrt{7^2} = 7\)[/tex], this simplifies to:
[tex]\[ \sqrt{3} \times 7 = 7 \sqrt{3} \][/tex]
Therefore, the simplified form of [tex]\(\sqrt{147}\)[/tex] is [tex]\(7 \sqrt{3}\)[/tex].
The correct answer is:
C. [tex]\(7 \sqrt{3}\)[/tex]
1. Prime Factorization of 147:
- We can start by breaking down the number 147 using its prime factors.
- 147 can be divided by 3 (since the sum of its digits, 1+4+7 = 12, is divisible by 3):
[tex]\[ 147 \div 3 = 49 \][/tex]
- Next, 49 is a perfect square:
[tex]\[ 49 = 7 \times 7 \][/tex]
- So, the prime factorization of 147 is:
[tex]\[ 147 = 3 \times 7 \times 7 = 3 \times 7^2 \][/tex]
2. Applying the Square Root:
- Using the property of square roots, we can rewrite [tex]\(\sqrt{147}\)[/tex] as:
[tex]\[ \sqrt{147} = \sqrt{3 \times 7^2} \][/tex]
- We can separate the square root over the factors:
[tex]\[ \sqrt{3 \times 7^2} = \sqrt{3} \times \sqrt{7^2} \][/tex]
- Since [tex]\(\sqrt{7^2} = 7\)[/tex], this simplifies to:
[tex]\[ \sqrt{3} \times 7 = 7 \sqrt{3} \][/tex]
Therefore, the simplified form of [tex]\(\sqrt{147}\)[/tex] is [tex]\(7 \sqrt{3}\)[/tex].
The correct answer is:
C. [tex]\(7 \sqrt{3}\)[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.