Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find [tex]\( r(t) \)[/tex] given the vector-valued function [tex]\( r'(t) = t^2 \mathbf{i} + e^t \mathbf{j} + 2t e^{2t} \mathbf{k} \)[/tex] and the initial condition [tex]\( r(0) = \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex], we perform the following steps:
1. Integrate each component of [tex]\( r'(t) \)[/tex] with respect to [tex]\( t \)[/tex] to find [tex]\( r(t) \)[/tex]:
- For the [tex]\(\mathbf{i}\)[/tex] component:
[tex]\[ \int t^2 \, dt = \frac{t^3}{3} + C_1 \][/tex]
- For the [tex]\(\mathbf{j}\)[/tex] component:
[tex]\[ \int e^t \, dt = e^t + C_2 \][/tex]
- For the [tex]\(\mathbf{k}\)[/tex] component:
[tex]\[ \int 2t e^{2t} \, dt = \int (2t)e^{2t} \, dt \][/tex]
To solve this, we use integration by parts:
Let [tex]\( u = 2t \)[/tex] and [tex]\( dv = e^{2t} dt \)[/tex].
Then, [tex]\( du = 2 dt \)[/tex] and [tex]\( v = \frac{e^{2t}}{2} \)[/tex].
Applying integration by parts,
[tex]\[ \int 2t e^{2t} \, dt = t e^{2t} - \int e^{2t} \, dt = t e^{2t} - \frac{e^{2t}}{2} + C_3 = \left(2t - \frac{1}{2}\right) \frac{e^{2t}}{2} + C_3 \][/tex]
Simplifying,
[tex]\[ \int 2t e^{2t} \, dt = \left(2t - 1\right) \frac{e^{2t}}{2} + C_3 \][/tex]
2. Combine the integrated results with their respective constants:
Thus, we have:
[tex]\[ r(t) = \frac{t^3}{3} \mathbf{i} + e^t \mathbf{j} + \left(\left(2t - 1\right) \frac{e^{2t}}{2} + C_3\right) \mathbf{k} \][/tex]
3. Determine the constants using the initial condition [tex]\( r(0) = \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex]:
At [tex]\( t = 0 \)[/tex]:
[tex]\[ r(0) = \frac{0^3}{3} \mathbf{i} + e^0 \mathbf{j} + \left(\left(2 \cdot 0 - 1\right) \frac{e^{2 \cdot 0}}{2} + C_3\right) \mathbf{k} = 0 \mathbf{i} + 1\mathbf{j} + \left(-\frac{1}{2} + C_3 \right)\mathbf{k} \][/tex]
This simplifies to:
[tex]\[ r(0) = \mathbf{j} + \left(-\frac{1}{2} + C_3 \right) \mathbf{k} \][/tex]
Given [tex]\( r(0) = \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex], we equate components:
[tex]\[ 0 \mathbf{i} = \mathbf{i} \implies C_1 = 1 \][/tex]
[tex]\[ 1 \mathbf{j} = 1 \mathbf{j} \implies C_2 = 0 \][/tex]
[tex]\[ \left(-\frac{1}{2} + C_3 \right) \mathbf{k} = \mathbf{k} \implies -\frac{1}{2} + C_3 = 1 \implies C_3 = \frac{3}{2} \][/tex]
4. Substitute the constants [tex]\( C_1 \)[/tex], [tex]\( C_2 \)[/tex], and [tex]\( C_3 \)[/tex] back into the integrated components:
Finally, we get:
[tex]\[ r(t) = \left( \frac{t^3}{3} + 1 \right) \mathbf{i} + \left( e^t \right) \mathbf{j} + \left( \frac{(2t - 1)e^{2t}}{2} + \frac{3}{2} \right) \mathbf{k} \][/tex]
Thus, the solution is:
[tex]\[ r(t) = \frac{t^3}{3} + 1, \quad r_j(t) = e^t, \quad r_k(t) = \frac{(2t - 1)e^{2t}}{2} + \frac{3}{2} \][/tex]
So,
[tex]\[ r(t) = \left(\frac{t^3}{3} + 1 \right) \mathbf{i} + e^t \mathbf{j} + \left( \frac{(2t - 1)e^{2t}}{2} + \frac{3}{2} \right) \mathbf{k} \][/tex]
1. Integrate each component of [tex]\( r'(t) \)[/tex] with respect to [tex]\( t \)[/tex] to find [tex]\( r(t) \)[/tex]:
- For the [tex]\(\mathbf{i}\)[/tex] component:
[tex]\[ \int t^2 \, dt = \frac{t^3}{3} + C_1 \][/tex]
- For the [tex]\(\mathbf{j}\)[/tex] component:
[tex]\[ \int e^t \, dt = e^t + C_2 \][/tex]
- For the [tex]\(\mathbf{k}\)[/tex] component:
[tex]\[ \int 2t e^{2t} \, dt = \int (2t)e^{2t} \, dt \][/tex]
To solve this, we use integration by parts:
Let [tex]\( u = 2t \)[/tex] and [tex]\( dv = e^{2t} dt \)[/tex].
Then, [tex]\( du = 2 dt \)[/tex] and [tex]\( v = \frac{e^{2t}}{2} \)[/tex].
Applying integration by parts,
[tex]\[ \int 2t e^{2t} \, dt = t e^{2t} - \int e^{2t} \, dt = t e^{2t} - \frac{e^{2t}}{2} + C_3 = \left(2t - \frac{1}{2}\right) \frac{e^{2t}}{2} + C_3 \][/tex]
Simplifying,
[tex]\[ \int 2t e^{2t} \, dt = \left(2t - 1\right) \frac{e^{2t}}{2} + C_3 \][/tex]
2. Combine the integrated results with their respective constants:
Thus, we have:
[tex]\[ r(t) = \frac{t^3}{3} \mathbf{i} + e^t \mathbf{j} + \left(\left(2t - 1\right) \frac{e^{2t}}{2} + C_3\right) \mathbf{k} \][/tex]
3. Determine the constants using the initial condition [tex]\( r(0) = \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex]:
At [tex]\( t = 0 \)[/tex]:
[tex]\[ r(0) = \frac{0^3}{3} \mathbf{i} + e^0 \mathbf{j} + \left(\left(2 \cdot 0 - 1\right) \frac{e^{2 \cdot 0}}{2} + C_3\right) \mathbf{k} = 0 \mathbf{i} + 1\mathbf{j} + \left(-\frac{1}{2} + C_3 \right)\mathbf{k} \][/tex]
This simplifies to:
[tex]\[ r(0) = \mathbf{j} + \left(-\frac{1}{2} + C_3 \right) \mathbf{k} \][/tex]
Given [tex]\( r(0) = \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex], we equate components:
[tex]\[ 0 \mathbf{i} = \mathbf{i} \implies C_1 = 1 \][/tex]
[tex]\[ 1 \mathbf{j} = 1 \mathbf{j} \implies C_2 = 0 \][/tex]
[tex]\[ \left(-\frac{1}{2} + C_3 \right) \mathbf{k} = \mathbf{k} \implies -\frac{1}{2} + C_3 = 1 \implies C_3 = \frac{3}{2} \][/tex]
4. Substitute the constants [tex]\( C_1 \)[/tex], [tex]\( C_2 \)[/tex], and [tex]\( C_3 \)[/tex] back into the integrated components:
Finally, we get:
[tex]\[ r(t) = \left( \frac{t^3}{3} + 1 \right) \mathbf{i} + \left( e^t \right) \mathbf{j} + \left( \frac{(2t - 1)e^{2t}}{2} + \frac{3}{2} \right) \mathbf{k} \][/tex]
Thus, the solution is:
[tex]\[ r(t) = \frac{t^3}{3} + 1, \quad r_j(t) = e^t, \quad r_k(t) = \frac{(2t - 1)e^{2t}}{2} + \frac{3}{2} \][/tex]
So,
[tex]\[ r(t) = \left(\frac{t^3}{3} + 1 \right) \mathbf{i} + e^t \mathbf{j} + \left( \frac{(2t - 1)e^{2t}}{2} + \frac{3}{2} \right) \mathbf{k} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.