At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To evaluate the integral of the given vector function, we will integrate each component separately with respect to [tex]\( t \)[/tex]. Let's denote the integral as follows:
[tex]\[ \int \left( \frac{8}{1+t^2} i + t e^{t^2} j + 5 \sqrt{t} k \right) dt \][/tex]
### Step-by-Step Solution
1. Integrating the [tex]\( i \)[/tex]-component:
[tex]\[ \int \frac{8}{1+t^2} \, dt \][/tex]
The integrand [tex]\(\frac{8}{1+t^2}\)[/tex] is a well-known form which integrates to [tex]\(8 \arctan(t)\)[/tex]. Hence,
[tex]\[ \int \frac{8}{1+t^2} \, dt = 8 \arctan(t) \][/tex]
2. Integrating the [tex]\( j \)[/tex]-component:
[tex]\[ \int t e^{t^2} \, dt \][/tex]
To integrate [tex]\( t e^{t^2} \)[/tex], we can use the substitution [tex]\( u = t^2 \)[/tex]. Therefore, [tex]\( du = 2t \, dt \)[/tex] or [tex]\( \frac{du}{2} = t \, dt \)[/tex]. Rewriting the integral in terms of [tex]\( u \)[/tex],
[tex]\[ \int t e^{t^2} \, dt = \int e^{u} \frac{du}{2} = \frac{1}{2} \int e^{u} \, du \][/tex]
The integral of [tex]\( e^{u} \)[/tex] is simply [tex]\( e^u \)[/tex]. Re-substituting [tex]\( u = t^2 \)[/tex],
[tex]\[ \frac{1}{2} e^u = \frac{1}{2} e^{t^2} \][/tex]
Thus,
[tex]\[ \int t e^{t^2} \, dt = \frac{1}{2} e^{t^2} \][/tex]
3. Integrating the [tex]\( k \)[/tex]-component:
[tex]\[ \int 5 \sqrt{t} \, dt \][/tex]
Recall that [tex]\(\sqrt{t} = t^{1/2} \)[/tex]. Hence,
[tex]\[ \int 5 t^{1/2} \, dt = 5 \int t^{1/2} \, dt \][/tex]
Using the power rule for integration [tex]\(\int t^n \, dt = \frac{t^{n+1}}{n+1} + C\)[/tex],
[tex]\[ 5 \int t^{1/2} \, dt = 5 \cdot \frac{t^{3/2}}{3/2} = \frac{10}{3} t^{3/2} \][/tex]
4. Combining the results:
Integrating each component separately, we get:
[tex]\[ \int \left( \frac{8}{1+t^2} i + t e^{t^2} j + 5 \sqrt{t} k \right) dt = 8 \arctan(t) i + \frac{1}{2} e^{t^2} j + \frac{10}{3} t^{3/2} k + C \][/tex]
Here, [tex]\( C \)[/tex] represents the constant of integration which is a vector-valued function. It can be written as [tex]\( C = C i + C j + C k \)[/tex].
Therefore, the final answer to the integral is:
[tex]\[ \boxed{8 \arctan(t) i + \frac{1}{2} e^{t^2} j + \frac{10}{3} t^{3/2} k + C} \][/tex]
[tex]\[ \int \left( \frac{8}{1+t^2} i + t e^{t^2} j + 5 \sqrt{t} k \right) dt \][/tex]
### Step-by-Step Solution
1. Integrating the [tex]\( i \)[/tex]-component:
[tex]\[ \int \frac{8}{1+t^2} \, dt \][/tex]
The integrand [tex]\(\frac{8}{1+t^2}\)[/tex] is a well-known form which integrates to [tex]\(8 \arctan(t)\)[/tex]. Hence,
[tex]\[ \int \frac{8}{1+t^2} \, dt = 8 \arctan(t) \][/tex]
2. Integrating the [tex]\( j \)[/tex]-component:
[tex]\[ \int t e^{t^2} \, dt \][/tex]
To integrate [tex]\( t e^{t^2} \)[/tex], we can use the substitution [tex]\( u = t^2 \)[/tex]. Therefore, [tex]\( du = 2t \, dt \)[/tex] or [tex]\( \frac{du}{2} = t \, dt \)[/tex]. Rewriting the integral in terms of [tex]\( u \)[/tex],
[tex]\[ \int t e^{t^2} \, dt = \int e^{u} \frac{du}{2} = \frac{1}{2} \int e^{u} \, du \][/tex]
The integral of [tex]\( e^{u} \)[/tex] is simply [tex]\( e^u \)[/tex]. Re-substituting [tex]\( u = t^2 \)[/tex],
[tex]\[ \frac{1}{2} e^u = \frac{1}{2} e^{t^2} \][/tex]
Thus,
[tex]\[ \int t e^{t^2} \, dt = \frac{1}{2} e^{t^2} \][/tex]
3. Integrating the [tex]\( k \)[/tex]-component:
[tex]\[ \int 5 \sqrt{t} \, dt \][/tex]
Recall that [tex]\(\sqrt{t} = t^{1/2} \)[/tex]. Hence,
[tex]\[ \int 5 t^{1/2} \, dt = 5 \int t^{1/2} \, dt \][/tex]
Using the power rule for integration [tex]\(\int t^n \, dt = \frac{t^{n+1}}{n+1} + C\)[/tex],
[tex]\[ 5 \int t^{1/2} \, dt = 5 \cdot \frac{t^{3/2}}{3/2} = \frac{10}{3} t^{3/2} \][/tex]
4. Combining the results:
Integrating each component separately, we get:
[tex]\[ \int \left( \frac{8}{1+t^2} i + t e^{t^2} j + 5 \sqrt{t} k \right) dt = 8 \arctan(t) i + \frac{1}{2} e^{t^2} j + \frac{10}{3} t^{3/2} k + C \][/tex]
Here, [tex]\( C \)[/tex] represents the constant of integration which is a vector-valued function. It can be written as [tex]\( C = C i + C j + C k \)[/tex].
Therefore, the final answer to the integral is:
[tex]\[ \boxed{8 \arctan(t) i + \frac{1}{2} e^{t^2} j + \frac{10}{3} t^{3/2} k + C} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.