Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point:

Given:
[tex]\[ x = t^2 + 1, \quad y = 8 \sqrt{t}, \quad z = e^{t^2 - t} \][/tex]
At the point [tex]\((2, 8, 1)\)[/tex].

[tex]\[
(x(t), y(t), z(t)) = (\square)
\][/tex]


Sagot :

Sure! Let's find the parametric equations for the tangent line to the curve given by the parametric equations [tex]\( x = t^2 + 1 \)[/tex], [tex]\( y = 8\sqrt{t} \)[/tex], and [tex]\( z = e^{t^2 - t} \)[/tex] at the specified point [tex]\((2, 8, 1)\)[/tex].

1. Determine the value of [tex]\( t \)[/tex] at the point (2, 8, 1)

First, we need to find the value of [tex]\( t \)[/tex] when the curve passes through the point [tex]\((2, 8, 1)\)[/tex].

- For [tex]\( x \)[/tex]:
[tex]\[ x = t^2 + 1 \implies 2 = t^2 + 1 \implies t^2 = 1 \implies t = \pm 1 \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ y = 8 \sqrt{t} \implies 8 = 8 \sqrt{t} \implies \sqrt{t} = 1 \implies t = 1 \][/tex]
- For [tex]\( z \)[/tex]:
[tex]\[ z = e^{t^2 - t} \implies 1 = e^{t^2 - t} \implies t^2 - t = 0 \implies t(t-1) = 0 \implies t = 0 \text{ or } t = 1 \][/tex]

Given that [tex]\( t = 1 \)[/tex] satisfies all the equations simultaneously, we have [tex]\( t = 1 \)[/tex].

2. Calculate derivatives at the point

Next, we'll find the derivatives of [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex] with respect to [tex]\( t \)[/tex] at [tex]\( t = 1 \)[/tex].

- For [tex]\( \frac{dx}{dt} \)[/tex]:
[tex]\[ x = t^2 + 1 \implies \frac{dx}{dt} = 2t \implies \frac{dx}{dt} \bigg|_{t=1} = 2 \cdot 1 = 2 \][/tex]

- For [tex]\( \frac{dy}{dt} \)[/tex]:
[tex]\[ y = 8 \sqrt{t} \implies \frac{dy}{dt} = 8 \cdot \frac{1}{2\sqrt{t}} = \frac{8}{2\sqrt{t}} = \frac{4}{\sqrt{t}} \implies \frac{dy}{dt} \bigg|_{t=1} = \frac{4}{\sqrt{1}} = 4 \][/tex]

- For [tex]\( \frac{dz}{dt} \)[/tex]:
[tex]\[ z = e^{t^2 - t} \implies \frac{dz}{dt} = e^{t^2 - t} \cdot \frac{d}{dt} (t^2 - t) = e^{t^2 - t} (2t-1) \implies \frac{dz}{dt} \bigg|_{t=1} = e^{1-1} \cdot (2 \cdot 1 - 1) = 1 \cdot 1 = 1 \][/tex]

3. Write the parametric equations for the tangent line

The parametric equations for the tangent line at [tex]\((2, 8, 1)\)[/tex] can be expressed as:
[tex]\[ \begin{cases} x = x_0 + \left(\frac{dx}{dt}\bigg|_{t=1}\right)(t) \\ y = y_0 + \left(\frac{dy}{dt}\bigg|_{t=1}\right)(t) \\ z = z_0 + \left(\frac{dz}{dt}\bigg|_{t=1}\right)(t) \end{cases} \][/tex]

By plugging in values [tex]\((x_0, y_0, z_0) = (2, 8, 1)\)[/tex], [tex]\(\frac{dx}{dt} = 2\)[/tex], [tex]\(\frac{dy}{dt} = 4\)[/tex], [tex]\(\frac{dz}{dt} = 1\)[/tex]:

[tex]\[ \begin{cases} x = 2 + 2t \\ y = 8 + 4t \\ z = 1 + t \end{cases} \][/tex]

Therefore, the parametric equations for the tangent line are:
[tex]\[ \boxed{ \begin{cases} x = 2 + 2t \\ y = 8 + 4t \\ z = 1 + t \end{cases} } \][/tex]