Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine how long it takes for the arrow to reach a height of 48 feet given an initial velocity of 96 feet per second, we start with the equation for height:
[tex]\[ s = v_0 t - 16 t^2 \][/tex]
Given:
- Initial velocity, [tex]\( v_0 = 96 \)[/tex] ft/s
- Height, [tex]\( s = 48 \)[/tex] ft
The problem can be set up as:
[tex]\[ 48 = 96 t - 16 t^2 \][/tex]
Rearranging it into a standard quadratic form:
[tex]\[ 16 t^2 - 96 t + 48 = 0 \][/tex]
This is a quadratic equation of the form [tex]\( at^2 + bt + c = 0 \)[/tex] where:
- [tex]\( a = 16 \)[/tex]
- [tex]\( b = -96 \)[/tex]
- [tex]\( c = 48 \)[/tex]
We can solve this using the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
First, we need to calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
Substituting in the values:
[tex]\[ \text{Discriminant} = (-96)^2 - 4(16)(48) \][/tex]
[tex]\[ \text{Discriminant} = 9216 - 3072 \][/tex]
[tex]\[ \text{Discriminant} = 6144 \][/tex]
The discriminant is 6144, which is a positive number, indicating there are two real roots. Now, applying the quadratic formula:
[tex]\[ t = \frac{96 \pm \sqrt{6144}}{32} \][/tex]
Solving for the roots:
[tex]\[ t_1 = \frac{96 + \sqrt{6144}}{32} \][/tex]
[tex]\[ t_1 \approx \frac{96 + 78.40}{32} \][/tex]
[tex]\[ t_1 \approx \frac{174.40}{32} \][/tex]
[tex]\[ t_1 \approx 5.45 \][/tex]
[tex]\[ t_2 = \frac{96 - \sqrt{6144}}{32} \][/tex]
[tex]\[ t_2 \approx \frac{96 - 78.40}{32} \][/tex]
[tex]\[ t_2 \approx \frac{17.60}{32} \][/tex]
[tex]\[ t_2 \approx 0.55 \][/tex]
Thus, the arrow reaches a height of 48 feet at approximately [tex]\( t_1 = 5.45 \)[/tex] seconds and [tex]\( t_2 = 0.55 \)[/tex] seconds, when rounded to the nearest hundredth.
[tex]\[ s = v_0 t - 16 t^2 \][/tex]
Given:
- Initial velocity, [tex]\( v_0 = 96 \)[/tex] ft/s
- Height, [tex]\( s = 48 \)[/tex] ft
The problem can be set up as:
[tex]\[ 48 = 96 t - 16 t^2 \][/tex]
Rearranging it into a standard quadratic form:
[tex]\[ 16 t^2 - 96 t + 48 = 0 \][/tex]
This is a quadratic equation of the form [tex]\( at^2 + bt + c = 0 \)[/tex] where:
- [tex]\( a = 16 \)[/tex]
- [tex]\( b = -96 \)[/tex]
- [tex]\( c = 48 \)[/tex]
We can solve this using the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
First, we need to calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
Substituting in the values:
[tex]\[ \text{Discriminant} = (-96)^2 - 4(16)(48) \][/tex]
[tex]\[ \text{Discriminant} = 9216 - 3072 \][/tex]
[tex]\[ \text{Discriminant} = 6144 \][/tex]
The discriminant is 6144, which is a positive number, indicating there are two real roots. Now, applying the quadratic formula:
[tex]\[ t = \frac{96 \pm \sqrt{6144}}{32} \][/tex]
Solving for the roots:
[tex]\[ t_1 = \frac{96 + \sqrt{6144}}{32} \][/tex]
[tex]\[ t_1 \approx \frac{96 + 78.40}{32} \][/tex]
[tex]\[ t_1 \approx \frac{174.40}{32} \][/tex]
[tex]\[ t_1 \approx 5.45 \][/tex]
[tex]\[ t_2 = \frac{96 - \sqrt{6144}}{32} \][/tex]
[tex]\[ t_2 \approx \frac{96 - 78.40}{32} \][/tex]
[tex]\[ t_2 \approx \frac{17.60}{32} \][/tex]
[tex]\[ t_2 \approx 0.55 \][/tex]
Thus, the arrow reaches a height of 48 feet at approximately [tex]\( t_1 = 5.45 \)[/tex] seconds and [tex]\( t_2 = 0.55 \)[/tex] seconds, when rounded to the nearest hundredth.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.