At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine how long it takes for the arrow to reach a height of 48 feet given an initial velocity of 96 feet per second, we start with the equation for height:
[tex]\[ s = v_0 t - 16 t^2 \][/tex]
Given:
- Initial velocity, [tex]\( v_0 = 96 \)[/tex] ft/s
- Height, [tex]\( s = 48 \)[/tex] ft
The problem can be set up as:
[tex]\[ 48 = 96 t - 16 t^2 \][/tex]
Rearranging it into a standard quadratic form:
[tex]\[ 16 t^2 - 96 t + 48 = 0 \][/tex]
This is a quadratic equation of the form [tex]\( at^2 + bt + c = 0 \)[/tex] where:
- [tex]\( a = 16 \)[/tex]
- [tex]\( b = -96 \)[/tex]
- [tex]\( c = 48 \)[/tex]
We can solve this using the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
First, we need to calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
Substituting in the values:
[tex]\[ \text{Discriminant} = (-96)^2 - 4(16)(48) \][/tex]
[tex]\[ \text{Discriminant} = 9216 - 3072 \][/tex]
[tex]\[ \text{Discriminant} = 6144 \][/tex]
The discriminant is 6144, which is a positive number, indicating there are two real roots. Now, applying the quadratic formula:
[tex]\[ t = \frac{96 \pm \sqrt{6144}}{32} \][/tex]
Solving for the roots:
[tex]\[ t_1 = \frac{96 + \sqrt{6144}}{32} \][/tex]
[tex]\[ t_1 \approx \frac{96 + 78.40}{32} \][/tex]
[tex]\[ t_1 \approx \frac{174.40}{32} \][/tex]
[tex]\[ t_1 \approx 5.45 \][/tex]
[tex]\[ t_2 = \frac{96 - \sqrt{6144}}{32} \][/tex]
[tex]\[ t_2 \approx \frac{96 - 78.40}{32} \][/tex]
[tex]\[ t_2 \approx \frac{17.60}{32} \][/tex]
[tex]\[ t_2 \approx 0.55 \][/tex]
Thus, the arrow reaches a height of 48 feet at approximately [tex]\( t_1 = 5.45 \)[/tex] seconds and [tex]\( t_2 = 0.55 \)[/tex] seconds, when rounded to the nearest hundredth.
[tex]\[ s = v_0 t - 16 t^2 \][/tex]
Given:
- Initial velocity, [tex]\( v_0 = 96 \)[/tex] ft/s
- Height, [tex]\( s = 48 \)[/tex] ft
The problem can be set up as:
[tex]\[ 48 = 96 t - 16 t^2 \][/tex]
Rearranging it into a standard quadratic form:
[tex]\[ 16 t^2 - 96 t + 48 = 0 \][/tex]
This is a quadratic equation of the form [tex]\( at^2 + bt + c = 0 \)[/tex] where:
- [tex]\( a = 16 \)[/tex]
- [tex]\( b = -96 \)[/tex]
- [tex]\( c = 48 \)[/tex]
We can solve this using the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
First, we need to calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
Substituting in the values:
[tex]\[ \text{Discriminant} = (-96)^2 - 4(16)(48) \][/tex]
[tex]\[ \text{Discriminant} = 9216 - 3072 \][/tex]
[tex]\[ \text{Discriminant} = 6144 \][/tex]
The discriminant is 6144, which is a positive number, indicating there are two real roots. Now, applying the quadratic formula:
[tex]\[ t = \frac{96 \pm \sqrt{6144}}{32} \][/tex]
Solving for the roots:
[tex]\[ t_1 = \frac{96 + \sqrt{6144}}{32} \][/tex]
[tex]\[ t_1 \approx \frac{96 + 78.40}{32} \][/tex]
[tex]\[ t_1 \approx \frac{174.40}{32} \][/tex]
[tex]\[ t_1 \approx 5.45 \][/tex]
[tex]\[ t_2 = \frac{96 - \sqrt{6144}}{32} \][/tex]
[tex]\[ t_2 \approx \frac{96 - 78.40}{32} \][/tex]
[tex]\[ t_2 \approx \frac{17.60}{32} \][/tex]
[tex]\[ t_2 \approx 0.55 \][/tex]
Thus, the arrow reaches a height of 48 feet at approximately [tex]\( t_1 = 5.45 \)[/tex] seconds and [tex]\( t_2 = 0.55 \)[/tex] seconds, when rounded to the nearest hundredth.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.