Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine how long it takes for the arrow to reach a height of 48 feet given an initial velocity of 96 feet per second, we start with the equation for height:
[tex]\[ s = v_0 t - 16 t^2 \][/tex]
Given:
- Initial velocity, [tex]\( v_0 = 96 \)[/tex] ft/s
- Height, [tex]\( s = 48 \)[/tex] ft
The problem can be set up as:
[tex]\[ 48 = 96 t - 16 t^2 \][/tex]
Rearranging it into a standard quadratic form:
[tex]\[ 16 t^2 - 96 t + 48 = 0 \][/tex]
This is a quadratic equation of the form [tex]\( at^2 + bt + c = 0 \)[/tex] where:
- [tex]\( a = 16 \)[/tex]
- [tex]\( b = -96 \)[/tex]
- [tex]\( c = 48 \)[/tex]
We can solve this using the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
First, we need to calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
Substituting in the values:
[tex]\[ \text{Discriminant} = (-96)^2 - 4(16)(48) \][/tex]
[tex]\[ \text{Discriminant} = 9216 - 3072 \][/tex]
[tex]\[ \text{Discriminant} = 6144 \][/tex]
The discriminant is 6144, which is a positive number, indicating there are two real roots. Now, applying the quadratic formula:
[tex]\[ t = \frac{96 \pm \sqrt{6144}}{32} \][/tex]
Solving for the roots:
[tex]\[ t_1 = \frac{96 + \sqrt{6144}}{32} \][/tex]
[tex]\[ t_1 \approx \frac{96 + 78.40}{32} \][/tex]
[tex]\[ t_1 \approx \frac{174.40}{32} \][/tex]
[tex]\[ t_1 \approx 5.45 \][/tex]
[tex]\[ t_2 = \frac{96 - \sqrt{6144}}{32} \][/tex]
[tex]\[ t_2 \approx \frac{96 - 78.40}{32} \][/tex]
[tex]\[ t_2 \approx \frac{17.60}{32} \][/tex]
[tex]\[ t_2 \approx 0.55 \][/tex]
Thus, the arrow reaches a height of 48 feet at approximately [tex]\( t_1 = 5.45 \)[/tex] seconds and [tex]\( t_2 = 0.55 \)[/tex] seconds, when rounded to the nearest hundredth.
[tex]\[ s = v_0 t - 16 t^2 \][/tex]
Given:
- Initial velocity, [tex]\( v_0 = 96 \)[/tex] ft/s
- Height, [tex]\( s = 48 \)[/tex] ft
The problem can be set up as:
[tex]\[ 48 = 96 t - 16 t^2 \][/tex]
Rearranging it into a standard quadratic form:
[tex]\[ 16 t^2 - 96 t + 48 = 0 \][/tex]
This is a quadratic equation of the form [tex]\( at^2 + bt + c = 0 \)[/tex] where:
- [tex]\( a = 16 \)[/tex]
- [tex]\( b = -96 \)[/tex]
- [tex]\( c = 48 \)[/tex]
We can solve this using the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
First, we need to calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
Substituting in the values:
[tex]\[ \text{Discriminant} = (-96)^2 - 4(16)(48) \][/tex]
[tex]\[ \text{Discriminant} = 9216 - 3072 \][/tex]
[tex]\[ \text{Discriminant} = 6144 \][/tex]
The discriminant is 6144, which is a positive number, indicating there are two real roots. Now, applying the quadratic formula:
[tex]\[ t = \frac{96 \pm \sqrt{6144}}{32} \][/tex]
Solving for the roots:
[tex]\[ t_1 = \frac{96 + \sqrt{6144}}{32} \][/tex]
[tex]\[ t_1 \approx \frac{96 + 78.40}{32} \][/tex]
[tex]\[ t_1 \approx \frac{174.40}{32} \][/tex]
[tex]\[ t_1 \approx 5.45 \][/tex]
[tex]\[ t_2 = \frac{96 - \sqrt{6144}}{32} \][/tex]
[tex]\[ t_2 \approx \frac{96 - 78.40}{32} \][/tex]
[tex]\[ t_2 \approx \frac{17.60}{32} \][/tex]
[tex]\[ t_2 \approx 0.55 \][/tex]
Thus, the arrow reaches a height of 48 feet at approximately [tex]\( t_1 = 5.45 \)[/tex] seconds and [tex]\( t_2 = 0.55 \)[/tex] seconds, when rounded to the nearest hundredth.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.