Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the length of one of the legs of an isosceles right triangle when the hypotenuse is 5 centimeters, follow these steps:
1. Understand the properties of an isosceles right triangle:
- In an isosceles right triangle, the two legs are of equal length.
- The relationship between the legs and the hypotenuse can be derived from the Pythagorean theorem:
[tex]\[ \text{leg}^2 + \text{leg}^2 = \text{hypotenuse}^2 \][/tex]
This simplifies to:
[tex]\[ 2 \cdot \text{leg}^2 = \text{hypotenuse}^2 \][/tex]
2. Substitute the given hypotenuse:
- The hypotenuse is given as 5 centimeters:
[tex]\[ 2 \cdot \text{leg}^2 = 5^2 \][/tex]
[tex]\[ 2 \cdot \text{leg}^2 = 25 \][/tex]
3. Solve for the leg:
- Divide both sides of the equation by 2 to solve for [tex]\(\text{leg}^2\)[/tex]:
[tex]\[ \text{leg}^2 = \frac{25}{2} \][/tex]
[tex]\[ \text{leg} = \sqrt{\frac{25}{2}} \][/tex]
4. Simplify the expression for the leg:
- Simplify the square root:
[tex]\[ \text{leg} = \frac{5}{\sqrt{2}} \][/tex]
5. Rationalize the denominator:
- Multiply both the numerator and the denominator by [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ \text{leg} = \frac{5 \sqrt{2}}{2} \][/tex]
Therefore, the length of one of the legs of the isosceles right triangle is [tex]\(\frac{5 \sqrt{2}}{2}\)[/tex] centimeters, which corresponds to the correct answer.
1. Understand the properties of an isosceles right triangle:
- In an isosceles right triangle, the two legs are of equal length.
- The relationship between the legs and the hypotenuse can be derived from the Pythagorean theorem:
[tex]\[ \text{leg}^2 + \text{leg}^2 = \text{hypotenuse}^2 \][/tex]
This simplifies to:
[tex]\[ 2 \cdot \text{leg}^2 = \text{hypotenuse}^2 \][/tex]
2. Substitute the given hypotenuse:
- The hypotenuse is given as 5 centimeters:
[tex]\[ 2 \cdot \text{leg}^2 = 5^2 \][/tex]
[tex]\[ 2 \cdot \text{leg}^2 = 25 \][/tex]
3. Solve for the leg:
- Divide both sides of the equation by 2 to solve for [tex]\(\text{leg}^2\)[/tex]:
[tex]\[ \text{leg}^2 = \frac{25}{2} \][/tex]
[tex]\[ \text{leg} = \sqrt{\frac{25}{2}} \][/tex]
4. Simplify the expression for the leg:
- Simplify the square root:
[tex]\[ \text{leg} = \frac{5}{\sqrt{2}} \][/tex]
5. Rationalize the denominator:
- Multiply both the numerator and the denominator by [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ \text{leg} = \frac{5 \sqrt{2}}{2} \][/tex]
Therefore, the length of one of the legs of the isosceles right triangle is [tex]\(\frac{5 \sqrt{2}}{2}\)[/tex] centimeters, which corresponds to the correct answer.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.