Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Solve the inequality, if possible. If the inequality has no solution, write "no solution." If the solutions are all real numbers, write "all real numbers."

1. [tex]\( 3(x + 3) \geq 9 + 3x \)[/tex]

2. Solve and graph the inequality: [tex]\( |2v - 1| \leq 7 \)[/tex]


Sagot :

Sure! Let's solve each of the given inequalities step-by-step.

### Inequality 1: [tex]\( 3(x+3) \geq 9 + 3x \)[/tex]

First, distribute the [tex]\(3\)[/tex] on the left-hand side:
[tex]\[ 3(x+3) = 3x + 9 \][/tex]

So the inequality now looks like:
[tex]\[ 3x + 9 \geq 9 + 3x \][/tex]

Next, subtract [tex]\(3x\)[/tex] from both sides of the inequality:
[tex]\[ 3x + 9 - 3x \geq 9 + 3x - 3x \][/tex]
[tex]\[ 9 \geq 9 \][/tex]

This simplifies to a true statement:
[tex]\[ 9 \geq 9 \][/tex]

Since this statement is always true regardless of the value of [tex]\(x\)[/tex], the inequality [tex]\( 3(x+3) \geq 9 + 3x \)[/tex] holds for all values of [tex]\(x\)[/tex]. Therefore, the inequality has no specific solution constraint and is true for all real numbers.

### Inequality 2: [tex]\( |2v - 1| \leq 7 \)[/tex]

For an absolute value inequality [tex]\( |A| \leq B \)[/tex], we solve it by considering the two cases:
[tex]\[ -B \leq A \leq B \][/tex]

Here [tex]\(A = 2v - 1\)[/tex] and [tex]\(B = 7\)[/tex], so we write:
[tex]\[ -7 \leq 2v - 1 \leq 7 \][/tex]

Now, solve this compound inequality step-by-step.

First, add 1 to all parts of the inequality:
[tex]\[ -7 + 1 \leq 2v - 1 + 1 \leq 7 + 1 \][/tex]
[tex]\[ -6 \leq 2v \leq 8 \][/tex]

Next, divide all parts of the inequality by 2:
[tex]\[ \frac{-6}{2} \leq \frac{2v}{2} \leq \frac{8}{2} \][/tex]
[tex]\[ -3 \leq v \leq 4 \][/tex]

So the solution to the inequality [tex]\( |2v - 1| \leq 7 \)[/tex] is:
[tex]\[ v \in [-3, 4] \][/tex]

### Summary

- Inequality [tex]\(3(x+3) \geq 9+3x\)[/tex] has the solution: All real numbers.
- Inequality [tex]\(|2v - 1| \leq 7\)[/tex] has the solution: [tex]\(-3 \leq v \leq 4\)[/tex].

These are the solutions to the given inequalities.