At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's solve this problem step-by-step.
### Part (a): Finding the Unit Tangent Vector [tex]\( T(t) \)[/tex] and the Unit Normal Vector [tex]\( N(t) \)[/tex]
1. Given Vector Function:
[tex]\[ r(t) = \left\langle t, t^2, 4 \right\rangle \][/tex]
2. Finding the Derivative [tex]\( r'(t) \)[/tex]:
[tex]\[ r'(t) = \frac{d}{dt}\left\langle t, t^2, 4 \right\rangle = \left\langle 1, 2t, 0 \right\rangle \][/tex]
3. Calculating the Norm of [tex]\( r'(t) \)[/tex]:
[tex]\[ \left| r'(t) \right| = \sqrt{1^2 + (2t)^2 + 0^2} = \sqrt{1 + 4t^2} \][/tex]
4. Finding the Unit Tangent Vector [tex]\( T(t) \)[/tex]:
[tex]\[ T(t) = \frac{r'(t)}{\left| r'(t) \right|} = \frac{\left\langle 1, 2t, 0 \right\rangle}{\sqrt{1 + 4t^2}} = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
Therefore,
[tex]\[ T(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
5. Finding the Derivative [tex]\( T'(t) \)[/tex]:
[tex]\[ T'(t) = \frac{d}{dt} \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
After differentiation, we get:
[tex]\[ T'(t) = \left\langle -\frac{4t}{(1 + 4t^2)^{3/2}}, \frac{2(1 + 4t^2) - 8t^2}{(1 + 4t^2)^{3/2}}, 0 \right\rangle \][/tex]
Simplifying:
[tex]\[ T'(t) = \left\langle -\frac{4t}{(1 + 4t^2)^{3/2}}, \frac{2 - 6t^2}{(1 + 4t^2)^{3/2}}, 0 \right\rangle \][/tex]
6. Calculating the Norm of [tex]\( T'(t) \)[/tex]:
[tex]\[ \left| T'(t) \right| = \sqrt{\left( -\frac{4t}{(1 + 4t^2)^{3/2}} \right)^2 + \left( \frac{2 - 6t^2}{(1 + 4t^2)^{3/2}} \right)^2 + 0^2} \][/tex]
Simplifying:
[tex]\[ \left| T'(t) \right| = \sqrt{\frac{16t^2}{(1 + 4t^2)^3} + \frac{(2 - 6t^2)^2}{(1 + 4t^2)^3}} \][/tex]
Further simplifying:
[tex]\[ \left| T'(t) \right| = \frac{\sqrt{16t^2 + (2 - 6t^2)^2}}{(1 + 4t^2)^{3/2}} \][/tex]
[tex]\[ \left| T'(t) \right| = \frac{\sqrt{16t^2 + (4 - 24t^2 + 36t^4)}}{(1 + 4t^2)^{3/2}} \][/tex]
[tex]\[ \left| T'(t) \right| = \frac{\sqrt{36t^4 - 8t^2 + 4}}{(1 + 4t^2)^{3/2}} \][/tex]
Simplifying the expression inside the square root:
[tex]\[ \left| T'(t) \right| = \frac{\sqrt{4(9t^4 - 2t^2 + 1)}}{(1 + 4t^2)^{3/2}} \][/tex]
[tex]\[ \left| T'(t) \right| = \frac{2\sqrt{9t^4 - 2t^2 + 1}}{(1 + 4t^2)^{3/2}} \][/tex]
7. Finding the Unit Normal Vector [tex]\( N(t) \)[/tex]:
[tex]\[ N(t) = \frac{T'(t)}{\left| T'(t) \right|} \][/tex]
So,
[tex]\[ N(t) = \boxed{\text{complex expression involving the components given above}} \][/tex]
### Part (b): Using the Formula to Find the Curvature [tex]\( \kappa(t) \)[/tex]
1. Using the formula [tex]\(\kappa(t) = \frac{\left| T'(t) \right|}{\left| r'(t) \right|}\)[/tex]:
From the expressions we derived:
[tex]\[ \left| r'(t) \right| = \sqrt{1 + 4t^2} \][/tex]
and we have [tex]\(\left| T'(t) \right|\)[/tex] as a complex expression.
2. Substituting the values:
[tex]\[ \kappa(t) = \frac{\left| T'(t) \right|}{\sqrt{1 + 4t^2}} \][/tex]
Which results in:
[tex]\[ \boxed{\kappa(t) = \text{complex expression involving squared terms}} \][/tex]
### Part (a): Finding the Unit Tangent Vector [tex]\( T(t) \)[/tex] and the Unit Normal Vector [tex]\( N(t) \)[/tex]
1. Given Vector Function:
[tex]\[ r(t) = \left\langle t, t^2, 4 \right\rangle \][/tex]
2. Finding the Derivative [tex]\( r'(t) \)[/tex]:
[tex]\[ r'(t) = \frac{d}{dt}\left\langle t, t^2, 4 \right\rangle = \left\langle 1, 2t, 0 \right\rangle \][/tex]
3. Calculating the Norm of [tex]\( r'(t) \)[/tex]:
[tex]\[ \left| r'(t) \right| = \sqrt{1^2 + (2t)^2 + 0^2} = \sqrt{1 + 4t^2} \][/tex]
4. Finding the Unit Tangent Vector [tex]\( T(t) \)[/tex]:
[tex]\[ T(t) = \frac{r'(t)}{\left| r'(t) \right|} = \frac{\left\langle 1, 2t, 0 \right\rangle}{\sqrt{1 + 4t^2}} = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
Therefore,
[tex]\[ T(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
5. Finding the Derivative [tex]\( T'(t) \)[/tex]:
[tex]\[ T'(t) = \frac{d}{dt} \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
After differentiation, we get:
[tex]\[ T'(t) = \left\langle -\frac{4t}{(1 + 4t^2)^{3/2}}, \frac{2(1 + 4t^2) - 8t^2}{(1 + 4t^2)^{3/2}}, 0 \right\rangle \][/tex]
Simplifying:
[tex]\[ T'(t) = \left\langle -\frac{4t}{(1 + 4t^2)^{3/2}}, \frac{2 - 6t^2}{(1 + 4t^2)^{3/2}}, 0 \right\rangle \][/tex]
6. Calculating the Norm of [tex]\( T'(t) \)[/tex]:
[tex]\[ \left| T'(t) \right| = \sqrt{\left( -\frac{4t}{(1 + 4t^2)^{3/2}} \right)^2 + \left( \frac{2 - 6t^2}{(1 + 4t^2)^{3/2}} \right)^2 + 0^2} \][/tex]
Simplifying:
[tex]\[ \left| T'(t) \right| = \sqrt{\frac{16t^2}{(1 + 4t^2)^3} + \frac{(2 - 6t^2)^2}{(1 + 4t^2)^3}} \][/tex]
Further simplifying:
[tex]\[ \left| T'(t) \right| = \frac{\sqrt{16t^2 + (2 - 6t^2)^2}}{(1 + 4t^2)^{3/2}} \][/tex]
[tex]\[ \left| T'(t) \right| = \frac{\sqrt{16t^2 + (4 - 24t^2 + 36t^4)}}{(1 + 4t^2)^{3/2}} \][/tex]
[tex]\[ \left| T'(t) \right| = \frac{\sqrt{36t^4 - 8t^2 + 4}}{(1 + 4t^2)^{3/2}} \][/tex]
Simplifying the expression inside the square root:
[tex]\[ \left| T'(t) \right| = \frac{\sqrt{4(9t^4 - 2t^2 + 1)}}{(1 + 4t^2)^{3/2}} \][/tex]
[tex]\[ \left| T'(t) \right| = \frac{2\sqrt{9t^4 - 2t^2 + 1}}{(1 + 4t^2)^{3/2}} \][/tex]
7. Finding the Unit Normal Vector [tex]\( N(t) \)[/tex]:
[tex]\[ N(t) = \frac{T'(t)}{\left| T'(t) \right|} \][/tex]
So,
[tex]\[ N(t) = \boxed{\text{complex expression involving the components given above}} \][/tex]
### Part (b): Using the Formula to Find the Curvature [tex]\( \kappa(t) \)[/tex]
1. Using the formula [tex]\(\kappa(t) = \frac{\left| T'(t) \right|}{\left| r'(t) \right|}\)[/tex]:
From the expressions we derived:
[tex]\[ \left| r'(t) \right| = \sqrt{1 + 4t^2} \][/tex]
and we have [tex]\(\left| T'(t) \right|\)[/tex] as a complex expression.
2. Substituting the values:
[tex]\[ \kappa(t) = \frac{\left| T'(t) \right|}{\sqrt{1 + 4t^2}} \][/tex]
Which results in:
[tex]\[ \boxed{\kappa(t) = \text{complex expression involving squared terms}} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.