At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the curvature [tex]\(\kappa(t)\)[/tex] of the curve given by the vector function [tex]\(r(t) = \sqrt{6} t^2 \mathbf{i} + 2t \mathbf{j} + 2t^3 \mathbf{k}\)[/tex], we will follow these steps:
1. Calculate the first derivative [tex]\(r'(t)\)[/tex].
2. Calculate the second derivative [tex]\(r''(t)\)[/tex].
3. Compute the cross product [tex]\(r'(t) \times r''(t)\)[/tex].
4. Determine the magnitudes of [tex]\(r'(t) \times r''(t)\)[/tex] and [tex]\(r'(t)\)[/tex].
5. Apply the curvature formula [tex]\(\kappa(t) = \frac{|r'(t) \times r''(t)|}{|r'(t)|^3}\)[/tex].
### Step 1: Calculate the first derivative [tex]\(r'(t)\)[/tex]
Given:
[tex]\[ r(t) = \sqrt{6} t^2 \mathbf{i} + 2t \mathbf{j} + 2t^3 \mathbf{k} \][/tex]
The first derivative with respect to [tex]\(t\)[/tex] is:
[tex]\[ r'(t) = \frac{d}{dt}(\sqrt{6} t^2 \mathbf{i} + 2t \mathbf{j} + 2t^3 \mathbf{k}) \][/tex]
[tex]\[ r'(t) = 2 \sqrt{6} t \mathbf{i} + 2 \mathbf{j} + 6t^2 \mathbf{k} \][/tex]
### Step 2: Calculate the second derivative [tex]\(r''(t)\)[/tex]
The second derivative with respect to [tex]\(t\)[/tex] is:
[tex]\[ r''(t) = \frac{d}{dt}(2 \sqrt{6} t \mathbf{i} + 2 \mathbf{j} + 6t^2 \mathbf{k}) \][/tex]
[tex]\[ r''(t) = 2 \sqrt{6} \mathbf{i} + 0 \mathbf{j} + 12t \mathbf{k} \][/tex]
### Step 3: Compute the cross product [tex]\(r'(t) \times r''(t)\)[/tex]
Using the components of [tex]\(r'(t)\)[/tex] and [tex]\(r''(t)\)[/tex]:
[tex]\[ r'(t) = (2 \sqrt{6} t, 2, 6t^2) \][/tex]
[tex]\[ r''(t) = (2 \sqrt{6}, 0, 12t) \][/tex]
The cross product is given by the determinant of the following matrix:
[tex]\[ r'(t) \times r''(t) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2\sqrt{6}t & 2 & 6t^2 \\ 2\sqrt{6} & 0 & 12t \\ \end{vmatrix} \][/tex]
Calculating the determinant:
[tex]\[ \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2\sqrt{6}t & 2 & 6t^2 \\ 2\sqrt{6} & 0 & 12t \\ \end{vmatrix} = \mathbf{i}(2 \cdot 12t - 6t^2 \cdot 0) - \mathbf{j}(2\sqrt{6}t \cdot 12t - 6t^2 \cdot 2\sqrt{6}) + \mathbf{k}(2\sqrt{6}t \cdot 0 - 2\sqrt{6} \cdot 2) \][/tex]
[tex]\[ = \mathbf{i}(24t) - \mathbf{j}(24\sqrt{6}t^2 - 12\sqrt{6}t^2) + \mathbf{k}(-4\sqrt{6}) \][/tex]
[tex]\[ = 24t \mathbf{i} - 12\sqrt{6}t^2 \mathbf{j} - 4\sqrt{6} \mathbf{k} \][/tex]
### Step 4: Determine the magnitudes
The magnitude of the cross product [tex]\(r'(t) \times r''(t)\)[/tex] is:
[tex]\[ |r'(t) \times r''(t)| = \sqrt{(24t)^2 + (-12\sqrt{6}t^2)^2 + (-4\sqrt{6})^2} \][/tex]
[tex]\[ = \sqrt{576t^2 + 144t^4 \cdot 6 + 96} \][/tex]
[tex]\[ = \sqrt{576t^2 + 864t^4 + 96} \][/tex]
[tex]\[ = \sqrt{864t^4 + 576t^2 + 96} \][/tex]
The magnitude of [tex]\(r'(t)\)[/tex] is:
[tex]\[ |r'(t)| = \sqrt{(2\sqrt{6}t)^2 + (2)^2 + (6t^2)^2} \][/tex]
[tex]\[ = \sqrt{24t^2 + 4 + 36t^4} \][/tex]
[tex]\[ = \sqrt{36t^4 + 24t^2 + 4} \][/tex]
### Step 5: Apply the curvature formula
Finally, we compute the curvature [tex]\(\kappa(t)\)[/tex]:
[tex]\[ \kappa(t) = \frac{|r'(t) \times r''(t)|}{|r'(t)|^3} \][/tex]
Substituting the magnitudes:
[tex]\[ \kappa(t) = \frac{\sqrt{864t^4 + 576t^2 + 96}}{(\sqrt{36t^4 + 24t^2 + 4})^3} \][/tex]
Simplify the denominator:
[tex]\[ (\sqrt{36t^4 + 24t^2 + 4})^3 = (36t^4 + 24t^2 + 4)^{3/2} \][/tex]
Thus the curvature is:
[tex]\[ \kappa(t) = \frac{\sqrt{864t^4 + 576t^2 + 96}}{(36t^4 + 24t^2 + 4)^{3/2}} \][/tex]
1. Calculate the first derivative [tex]\(r'(t)\)[/tex].
2. Calculate the second derivative [tex]\(r''(t)\)[/tex].
3. Compute the cross product [tex]\(r'(t) \times r''(t)\)[/tex].
4. Determine the magnitudes of [tex]\(r'(t) \times r''(t)\)[/tex] and [tex]\(r'(t)\)[/tex].
5. Apply the curvature formula [tex]\(\kappa(t) = \frac{|r'(t) \times r''(t)|}{|r'(t)|^3}\)[/tex].
### Step 1: Calculate the first derivative [tex]\(r'(t)\)[/tex]
Given:
[tex]\[ r(t) = \sqrt{6} t^2 \mathbf{i} + 2t \mathbf{j} + 2t^3 \mathbf{k} \][/tex]
The first derivative with respect to [tex]\(t\)[/tex] is:
[tex]\[ r'(t) = \frac{d}{dt}(\sqrt{6} t^2 \mathbf{i} + 2t \mathbf{j} + 2t^3 \mathbf{k}) \][/tex]
[tex]\[ r'(t) = 2 \sqrt{6} t \mathbf{i} + 2 \mathbf{j} + 6t^2 \mathbf{k} \][/tex]
### Step 2: Calculate the second derivative [tex]\(r''(t)\)[/tex]
The second derivative with respect to [tex]\(t\)[/tex] is:
[tex]\[ r''(t) = \frac{d}{dt}(2 \sqrt{6} t \mathbf{i} + 2 \mathbf{j} + 6t^2 \mathbf{k}) \][/tex]
[tex]\[ r''(t) = 2 \sqrt{6} \mathbf{i} + 0 \mathbf{j} + 12t \mathbf{k} \][/tex]
### Step 3: Compute the cross product [tex]\(r'(t) \times r''(t)\)[/tex]
Using the components of [tex]\(r'(t)\)[/tex] and [tex]\(r''(t)\)[/tex]:
[tex]\[ r'(t) = (2 \sqrt{6} t, 2, 6t^2) \][/tex]
[tex]\[ r''(t) = (2 \sqrt{6}, 0, 12t) \][/tex]
The cross product is given by the determinant of the following matrix:
[tex]\[ r'(t) \times r''(t) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2\sqrt{6}t & 2 & 6t^2 \\ 2\sqrt{6} & 0 & 12t \\ \end{vmatrix} \][/tex]
Calculating the determinant:
[tex]\[ \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2\sqrt{6}t & 2 & 6t^2 \\ 2\sqrt{6} & 0 & 12t \\ \end{vmatrix} = \mathbf{i}(2 \cdot 12t - 6t^2 \cdot 0) - \mathbf{j}(2\sqrt{6}t \cdot 12t - 6t^2 \cdot 2\sqrt{6}) + \mathbf{k}(2\sqrt{6}t \cdot 0 - 2\sqrt{6} \cdot 2) \][/tex]
[tex]\[ = \mathbf{i}(24t) - \mathbf{j}(24\sqrt{6}t^2 - 12\sqrt{6}t^2) + \mathbf{k}(-4\sqrt{6}) \][/tex]
[tex]\[ = 24t \mathbf{i} - 12\sqrt{6}t^2 \mathbf{j} - 4\sqrt{6} \mathbf{k} \][/tex]
### Step 4: Determine the magnitudes
The magnitude of the cross product [tex]\(r'(t) \times r''(t)\)[/tex] is:
[tex]\[ |r'(t) \times r''(t)| = \sqrt{(24t)^2 + (-12\sqrt{6}t^2)^2 + (-4\sqrt{6})^2} \][/tex]
[tex]\[ = \sqrt{576t^2 + 144t^4 \cdot 6 + 96} \][/tex]
[tex]\[ = \sqrt{576t^2 + 864t^4 + 96} \][/tex]
[tex]\[ = \sqrt{864t^4 + 576t^2 + 96} \][/tex]
The magnitude of [tex]\(r'(t)\)[/tex] is:
[tex]\[ |r'(t)| = \sqrt{(2\sqrt{6}t)^2 + (2)^2 + (6t^2)^2} \][/tex]
[tex]\[ = \sqrt{24t^2 + 4 + 36t^4} \][/tex]
[tex]\[ = \sqrt{36t^4 + 24t^2 + 4} \][/tex]
### Step 5: Apply the curvature formula
Finally, we compute the curvature [tex]\(\kappa(t)\)[/tex]:
[tex]\[ \kappa(t) = \frac{|r'(t) \times r''(t)|}{|r'(t)|^3} \][/tex]
Substituting the magnitudes:
[tex]\[ \kappa(t) = \frac{\sqrt{864t^4 + 576t^2 + 96}}{(\sqrt{36t^4 + 24t^2 + 4})^3} \][/tex]
Simplify the denominator:
[tex]\[ (\sqrt{36t^4 + 24t^2 + 4})^3 = (36t^4 + 24t^2 + 4)^{3/2} \][/tex]
Thus the curvature is:
[tex]\[ \kappa(t) = \frac{\sqrt{864t^4 + 576t^2 + 96}}{(36t^4 + 24t^2 + 4)^{3/2}} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.