Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's solve the problem step-by-step to find the unit tangent vector [tex]\( T(t) \)[/tex] and the unit normal vector [tex]\( N(t) \)[/tex] for the given vector function:
[tex]\[ r(t) = \langle 4t^2, \sin(t) - t \cos(t), \cos(t) + t \sin(t) \rangle, \quad t > 0. \][/tex]
### Step 1: Find the Derivative [tex]\( r'(t) \)[/tex]
First, we need to find the derivative of [tex]\( r(t) \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ r'(t) = \langle \frac{d}{dt}(4t^2), \frac{d}{dt}(\sin(t) - t\cos(t)), \frac{d}{dt}(\cos(t) + t\sin(t)) \rangle. \][/tex]
Calculate each component:
[tex]\[ \frac{d}{dt}(4t^2) = 8t, \][/tex]
[tex]\[ \frac{d}{dt}(\sin(t) - t\cos(t)) = \cos(t) - (\cos(t) - t\sin(t)) = t\sin(t), \][/tex]
[tex]\[ \frac{d}{dt}(\cos(t) + t\sin(t)) = -\sin(t) + (\sin(t) + t\cos(t)) = t\cos(t). \][/tex]
Therefore:
[tex]\[ r'(t) = \langle 8t, t\sin(t), t\cos(t) \rangle. \][/tex]
### Step 2: Find the Magnitude of [tex]\( r'(t) \)[/tex]
Next, we find the magnitude (norm) of [tex]\( r'(t) \)[/tex]:
[tex]\[ \| r'(t) \| = \sqrt{(8t)^2 + (t\sin(t))^2 + (t\cos(t))^2}. \][/tex]
Simplify inside the square root:
[tex]\[ \| r'(t) \| = \sqrt{64t^2 + t^2\sin^2(t) + t^2\cos^2(t)}. \][/tex]
Use the Pythagorean identity [tex]\(\sin^2(t) + \cos^2(t) = 1\)[/tex]:
[tex]\[ \| r'(t) \| = \sqrt{64t^2 + t^2}. \][/tex]
Combine like terms:
[tex]\[ \| r'(t) \| = \sqrt{65t^2} = t\sqrt{65}. \][/tex]
### Step 3: Find the Unit Tangent Vector [tex]\( T(t) \)[/tex]
The unit tangent vector [tex]\( T(t) \)[/tex] is given by:
[tex]\[ T(t) = \frac{r'(t)}{\| r'(t) \|}. \][/tex]
Substitute [tex]\( r'(t) \)[/tex] and [tex]\( \| r'(t) \| \)[/tex]:
[tex]\[ T(t) = \frac{\langle 8t, t\sin(t), t\cos(t) \rangle}{t\sqrt{65}}. \][/tex]
Simplify the components:
[tex]\[ T(t) = \langle \frac{8t}{t\sqrt{65}}, \frac{t\sin(t)}{t\sqrt{65}}, \frac{t\cos(t)}{t\sqrt{65}} \rangle = \langle \frac{8}{\sqrt{65}}, \frac{\sin(t)}{\sqrt{65}}, \frac{\cos(t)}{\sqrt{65}} \rangle. \][/tex]
### Step 4: Find the Derivative of the Unit Tangent Vector [tex]\( T'(t) \)[/tex]
Find the derivative of [tex]\( T(t) \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ T'(t) = \left\langle \frac{d}{dt} \left( \frac{8}{\sqrt{65}} \right), \frac{d}{dt} \left( \frac{\sin(t)}{\sqrt{65}} \right), \frac{d}{dt} \left( \frac{\cos(t)}{\sqrt{65}} \right) \right\rangle. \][/tex]
Since [tex]\(\frac{8}{\sqrt{65}}\)[/tex] is a constant:
[tex]\[ \frac{d}{dt} \left( \frac{8}{\sqrt{65}} \right) = 0, \][/tex]
[tex]\[ \frac{d}{dt} \left( \frac{\sin(t)}{\sqrt{65}} \right) = \frac{\cos(t)}{\sqrt{65}}, \][/tex]
[tex]\[ \frac{d}{dt} \left( \frac{\cos(t)}{\sqrt{65}} \right) = \frac{-\sin(t)}{\sqrt{65}}. \][/tex]
So,
[tex]\[ T'(t) = \left\langle 0, \frac{\cos(t)}{\sqrt{65}}, \frac{-\sin(t)}{\sqrt{65}} \right\rangle. \][/tex]
### Step 5: Find the Magnitude of [tex]\( T'(t) \)[/tex]
Calculate the magnitude of [tex]\( T'(t) \)[/tex]:
[tex]\[ \| T'(t) \| = \sqrt{0^2 + \left( \frac{\cos(t)}{\sqrt{65}} \right)^2 + \left( \frac{-\sin(t)}{\sqrt{65}} \right)^2}. \][/tex]
Simplify inside the square root:
[tex]\[ \| T'(t) \| = \sqrt{0 + \frac{\cos^2(t)}{65} + \frac{\sin^2(t)}{65}}. \][/tex]
Use the Pythagorean identity again:
[tex]\[ \| T'(t) \| = \sqrt{\frac{\cos^2(t) + \sin^2(t)}{65}} = \sqrt{\frac{1}{65}} = \frac{1}{\sqrt{65}}. \][/tex]
### Step 6: Find the Unit Normal Vector [tex]\( N(t) \)[/tex]
The unit normal vector [tex]\( N(t) \)[/tex] is given by:
[tex]\[ N(t) = \frac{T'(t)}{\| T'(t) \|}. \][/tex]
Substitute [tex]\( T'(t) \)[/tex] and [tex]\( \| T'(t) \| \)[/tex]:
[tex]\[ N(t) = \frac{\left\langle 0, \frac{\cos(t)}{\sqrt{65}}, \frac{-\sin(t)}{\sqrt{65}} \right\rangle}{\frac{1}{\sqrt{65}}}. \][/tex]
Simplify:
[tex]\[ N(t) = \left\langle 0 \cdot \sqrt{65}, \frac{\cos(t)}{\sqrt{65}} \cdot \sqrt{65}, \frac{-\sin(t)}{\sqrt{65}} \cdot \sqrt{65} \right\rangle = \langle 0, \cos(t), -\sin(t) \rangle. \][/tex]
### Summary
To summarize, we have:
[tex]\[ T(t) = \langle \frac{8}{\sqrt{65}}, \frac{\sin(t)}{\sqrt{65}}, \frac{\cos(t)}{\sqrt{65}} \rangle, \][/tex]
[tex]\[ N(t) = \langle 0, \cos(t), -\sin(t) \rangle. \][/tex]
[tex]\[ r(t) = \langle 4t^2, \sin(t) - t \cos(t), \cos(t) + t \sin(t) \rangle, \quad t > 0. \][/tex]
### Step 1: Find the Derivative [tex]\( r'(t) \)[/tex]
First, we need to find the derivative of [tex]\( r(t) \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ r'(t) = \langle \frac{d}{dt}(4t^2), \frac{d}{dt}(\sin(t) - t\cos(t)), \frac{d}{dt}(\cos(t) + t\sin(t)) \rangle. \][/tex]
Calculate each component:
[tex]\[ \frac{d}{dt}(4t^2) = 8t, \][/tex]
[tex]\[ \frac{d}{dt}(\sin(t) - t\cos(t)) = \cos(t) - (\cos(t) - t\sin(t)) = t\sin(t), \][/tex]
[tex]\[ \frac{d}{dt}(\cos(t) + t\sin(t)) = -\sin(t) + (\sin(t) + t\cos(t)) = t\cos(t). \][/tex]
Therefore:
[tex]\[ r'(t) = \langle 8t, t\sin(t), t\cos(t) \rangle. \][/tex]
### Step 2: Find the Magnitude of [tex]\( r'(t) \)[/tex]
Next, we find the magnitude (norm) of [tex]\( r'(t) \)[/tex]:
[tex]\[ \| r'(t) \| = \sqrt{(8t)^2 + (t\sin(t))^2 + (t\cos(t))^2}. \][/tex]
Simplify inside the square root:
[tex]\[ \| r'(t) \| = \sqrt{64t^2 + t^2\sin^2(t) + t^2\cos^2(t)}. \][/tex]
Use the Pythagorean identity [tex]\(\sin^2(t) + \cos^2(t) = 1\)[/tex]:
[tex]\[ \| r'(t) \| = \sqrt{64t^2 + t^2}. \][/tex]
Combine like terms:
[tex]\[ \| r'(t) \| = \sqrt{65t^2} = t\sqrt{65}. \][/tex]
### Step 3: Find the Unit Tangent Vector [tex]\( T(t) \)[/tex]
The unit tangent vector [tex]\( T(t) \)[/tex] is given by:
[tex]\[ T(t) = \frac{r'(t)}{\| r'(t) \|}. \][/tex]
Substitute [tex]\( r'(t) \)[/tex] and [tex]\( \| r'(t) \| \)[/tex]:
[tex]\[ T(t) = \frac{\langle 8t, t\sin(t), t\cos(t) \rangle}{t\sqrt{65}}. \][/tex]
Simplify the components:
[tex]\[ T(t) = \langle \frac{8t}{t\sqrt{65}}, \frac{t\sin(t)}{t\sqrt{65}}, \frac{t\cos(t)}{t\sqrt{65}} \rangle = \langle \frac{8}{\sqrt{65}}, \frac{\sin(t)}{\sqrt{65}}, \frac{\cos(t)}{\sqrt{65}} \rangle. \][/tex]
### Step 4: Find the Derivative of the Unit Tangent Vector [tex]\( T'(t) \)[/tex]
Find the derivative of [tex]\( T(t) \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ T'(t) = \left\langle \frac{d}{dt} \left( \frac{8}{\sqrt{65}} \right), \frac{d}{dt} \left( \frac{\sin(t)}{\sqrt{65}} \right), \frac{d}{dt} \left( \frac{\cos(t)}{\sqrt{65}} \right) \right\rangle. \][/tex]
Since [tex]\(\frac{8}{\sqrt{65}}\)[/tex] is a constant:
[tex]\[ \frac{d}{dt} \left( \frac{8}{\sqrt{65}} \right) = 0, \][/tex]
[tex]\[ \frac{d}{dt} \left( \frac{\sin(t)}{\sqrt{65}} \right) = \frac{\cos(t)}{\sqrt{65}}, \][/tex]
[tex]\[ \frac{d}{dt} \left( \frac{\cos(t)}{\sqrt{65}} \right) = \frac{-\sin(t)}{\sqrt{65}}. \][/tex]
So,
[tex]\[ T'(t) = \left\langle 0, \frac{\cos(t)}{\sqrt{65}}, \frac{-\sin(t)}{\sqrt{65}} \right\rangle. \][/tex]
### Step 5: Find the Magnitude of [tex]\( T'(t) \)[/tex]
Calculate the magnitude of [tex]\( T'(t) \)[/tex]:
[tex]\[ \| T'(t) \| = \sqrt{0^2 + \left( \frac{\cos(t)}{\sqrt{65}} \right)^2 + \left( \frac{-\sin(t)}{\sqrt{65}} \right)^2}. \][/tex]
Simplify inside the square root:
[tex]\[ \| T'(t) \| = \sqrt{0 + \frac{\cos^2(t)}{65} + \frac{\sin^2(t)}{65}}. \][/tex]
Use the Pythagorean identity again:
[tex]\[ \| T'(t) \| = \sqrt{\frac{\cos^2(t) + \sin^2(t)}{65}} = \sqrt{\frac{1}{65}} = \frac{1}{\sqrt{65}}. \][/tex]
### Step 6: Find the Unit Normal Vector [tex]\( N(t) \)[/tex]
The unit normal vector [tex]\( N(t) \)[/tex] is given by:
[tex]\[ N(t) = \frac{T'(t)}{\| T'(t) \|}. \][/tex]
Substitute [tex]\( T'(t) \)[/tex] and [tex]\( \| T'(t) \| \)[/tex]:
[tex]\[ N(t) = \frac{\left\langle 0, \frac{\cos(t)}{\sqrt{65}}, \frac{-\sin(t)}{\sqrt{65}} \right\rangle}{\frac{1}{\sqrt{65}}}. \][/tex]
Simplify:
[tex]\[ N(t) = \left\langle 0 \cdot \sqrt{65}, \frac{\cos(t)}{\sqrt{65}} \cdot \sqrt{65}, \frac{-\sin(t)}{\sqrt{65}} \cdot \sqrt{65} \right\rangle = \langle 0, \cos(t), -\sin(t) \rangle. \][/tex]
### Summary
To summarize, we have:
[tex]\[ T(t) = \langle \frac{8}{\sqrt{65}}, \frac{\sin(t)}{\sqrt{65}}, \frac{\cos(t)}{\sqrt{65}} \rangle, \][/tex]
[tex]\[ N(t) = \langle 0, \cos(t), -\sin(t) \rangle. \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.