At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's solve the problem step-by-step to find the unit tangent vector [tex]\( T(t) \)[/tex] and the unit normal vector [tex]\( N(t) \)[/tex] for the given vector function:
[tex]\[ r(t) = \langle 4t^2, \sin(t) - t \cos(t), \cos(t) + t \sin(t) \rangle, \quad t > 0. \][/tex]
### Step 1: Find the Derivative [tex]\( r'(t) \)[/tex]
First, we need to find the derivative of [tex]\( r(t) \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ r'(t) = \langle \frac{d}{dt}(4t^2), \frac{d}{dt}(\sin(t) - t\cos(t)), \frac{d}{dt}(\cos(t) + t\sin(t)) \rangle. \][/tex]
Calculate each component:
[tex]\[ \frac{d}{dt}(4t^2) = 8t, \][/tex]
[tex]\[ \frac{d}{dt}(\sin(t) - t\cos(t)) = \cos(t) - (\cos(t) - t\sin(t)) = t\sin(t), \][/tex]
[tex]\[ \frac{d}{dt}(\cos(t) + t\sin(t)) = -\sin(t) + (\sin(t) + t\cos(t)) = t\cos(t). \][/tex]
Therefore:
[tex]\[ r'(t) = \langle 8t, t\sin(t), t\cos(t) \rangle. \][/tex]
### Step 2: Find the Magnitude of [tex]\( r'(t) \)[/tex]
Next, we find the magnitude (norm) of [tex]\( r'(t) \)[/tex]:
[tex]\[ \| r'(t) \| = \sqrt{(8t)^2 + (t\sin(t))^2 + (t\cos(t))^2}. \][/tex]
Simplify inside the square root:
[tex]\[ \| r'(t) \| = \sqrt{64t^2 + t^2\sin^2(t) + t^2\cos^2(t)}. \][/tex]
Use the Pythagorean identity [tex]\(\sin^2(t) + \cos^2(t) = 1\)[/tex]:
[tex]\[ \| r'(t) \| = \sqrt{64t^2 + t^2}. \][/tex]
Combine like terms:
[tex]\[ \| r'(t) \| = \sqrt{65t^2} = t\sqrt{65}. \][/tex]
### Step 3: Find the Unit Tangent Vector [tex]\( T(t) \)[/tex]
The unit tangent vector [tex]\( T(t) \)[/tex] is given by:
[tex]\[ T(t) = \frac{r'(t)}{\| r'(t) \|}. \][/tex]
Substitute [tex]\( r'(t) \)[/tex] and [tex]\( \| r'(t) \| \)[/tex]:
[tex]\[ T(t) = \frac{\langle 8t, t\sin(t), t\cos(t) \rangle}{t\sqrt{65}}. \][/tex]
Simplify the components:
[tex]\[ T(t) = \langle \frac{8t}{t\sqrt{65}}, \frac{t\sin(t)}{t\sqrt{65}}, \frac{t\cos(t)}{t\sqrt{65}} \rangle = \langle \frac{8}{\sqrt{65}}, \frac{\sin(t)}{\sqrt{65}}, \frac{\cos(t)}{\sqrt{65}} \rangle. \][/tex]
### Step 4: Find the Derivative of the Unit Tangent Vector [tex]\( T'(t) \)[/tex]
Find the derivative of [tex]\( T(t) \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ T'(t) = \left\langle \frac{d}{dt} \left( \frac{8}{\sqrt{65}} \right), \frac{d}{dt} \left( \frac{\sin(t)}{\sqrt{65}} \right), \frac{d}{dt} \left( \frac{\cos(t)}{\sqrt{65}} \right) \right\rangle. \][/tex]
Since [tex]\(\frac{8}{\sqrt{65}}\)[/tex] is a constant:
[tex]\[ \frac{d}{dt} \left( \frac{8}{\sqrt{65}} \right) = 0, \][/tex]
[tex]\[ \frac{d}{dt} \left( \frac{\sin(t)}{\sqrt{65}} \right) = \frac{\cos(t)}{\sqrt{65}}, \][/tex]
[tex]\[ \frac{d}{dt} \left( \frac{\cos(t)}{\sqrt{65}} \right) = \frac{-\sin(t)}{\sqrt{65}}. \][/tex]
So,
[tex]\[ T'(t) = \left\langle 0, \frac{\cos(t)}{\sqrt{65}}, \frac{-\sin(t)}{\sqrt{65}} \right\rangle. \][/tex]
### Step 5: Find the Magnitude of [tex]\( T'(t) \)[/tex]
Calculate the magnitude of [tex]\( T'(t) \)[/tex]:
[tex]\[ \| T'(t) \| = \sqrt{0^2 + \left( \frac{\cos(t)}{\sqrt{65}} \right)^2 + \left( \frac{-\sin(t)}{\sqrt{65}} \right)^2}. \][/tex]
Simplify inside the square root:
[tex]\[ \| T'(t) \| = \sqrt{0 + \frac{\cos^2(t)}{65} + \frac{\sin^2(t)}{65}}. \][/tex]
Use the Pythagorean identity again:
[tex]\[ \| T'(t) \| = \sqrt{\frac{\cos^2(t) + \sin^2(t)}{65}} = \sqrt{\frac{1}{65}} = \frac{1}{\sqrt{65}}. \][/tex]
### Step 6: Find the Unit Normal Vector [tex]\( N(t) \)[/tex]
The unit normal vector [tex]\( N(t) \)[/tex] is given by:
[tex]\[ N(t) = \frac{T'(t)}{\| T'(t) \|}. \][/tex]
Substitute [tex]\( T'(t) \)[/tex] and [tex]\( \| T'(t) \| \)[/tex]:
[tex]\[ N(t) = \frac{\left\langle 0, \frac{\cos(t)}{\sqrt{65}}, \frac{-\sin(t)}{\sqrt{65}} \right\rangle}{\frac{1}{\sqrt{65}}}. \][/tex]
Simplify:
[tex]\[ N(t) = \left\langle 0 \cdot \sqrt{65}, \frac{\cos(t)}{\sqrt{65}} \cdot \sqrt{65}, \frac{-\sin(t)}{\sqrt{65}} \cdot \sqrt{65} \right\rangle = \langle 0, \cos(t), -\sin(t) \rangle. \][/tex]
### Summary
To summarize, we have:
[tex]\[ T(t) = \langle \frac{8}{\sqrt{65}}, \frac{\sin(t)}{\sqrt{65}}, \frac{\cos(t)}{\sqrt{65}} \rangle, \][/tex]
[tex]\[ N(t) = \langle 0, \cos(t), -\sin(t) \rangle. \][/tex]
[tex]\[ r(t) = \langle 4t^2, \sin(t) - t \cos(t), \cos(t) + t \sin(t) \rangle, \quad t > 0. \][/tex]
### Step 1: Find the Derivative [tex]\( r'(t) \)[/tex]
First, we need to find the derivative of [tex]\( r(t) \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ r'(t) = \langle \frac{d}{dt}(4t^2), \frac{d}{dt}(\sin(t) - t\cos(t)), \frac{d}{dt}(\cos(t) + t\sin(t)) \rangle. \][/tex]
Calculate each component:
[tex]\[ \frac{d}{dt}(4t^2) = 8t, \][/tex]
[tex]\[ \frac{d}{dt}(\sin(t) - t\cos(t)) = \cos(t) - (\cos(t) - t\sin(t)) = t\sin(t), \][/tex]
[tex]\[ \frac{d}{dt}(\cos(t) + t\sin(t)) = -\sin(t) + (\sin(t) + t\cos(t)) = t\cos(t). \][/tex]
Therefore:
[tex]\[ r'(t) = \langle 8t, t\sin(t), t\cos(t) \rangle. \][/tex]
### Step 2: Find the Magnitude of [tex]\( r'(t) \)[/tex]
Next, we find the magnitude (norm) of [tex]\( r'(t) \)[/tex]:
[tex]\[ \| r'(t) \| = \sqrt{(8t)^2 + (t\sin(t))^2 + (t\cos(t))^2}. \][/tex]
Simplify inside the square root:
[tex]\[ \| r'(t) \| = \sqrt{64t^2 + t^2\sin^2(t) + t^2\cos^2(t)}. \][/tex]
Use the Pythagorean identity [tex]\(\sin^2(t) + \cos^2(t) = 1\)[/tex]:
[tex]\[ \| r'(t) \| = \sqrt{64t^2 + t^2}. \][/tex]
Combine like terms:
[tex]\[ \| r'(t) \| = \sqrt{65t^2} = t\sqrt{65}. \][/tex]
### Step 3: Find the Unit Tangent Vector [tex]\( T(t) \)[/tex]
The unit tangent vector [tex]\( T(t) \)[/tex] is given by:
[tex]\[ T(t) = \frac{r'(t)}{\| r'(t) \|}. \][/tex]
Substitute [tex]\( r'(t) \)[/tex] and [tex]\( \| r'(t) \| \)[/tex]:
[tex]\[ T(t) = \frac{\langle 8t, t\sin(t), t\cos(t) \rangle}{t\sqrt{65}}. \][/tex]
Simplify the components:
[tex]\[ T(t) = \langle \frac{8t}{t\sqrt{65}}, \frac{t\sin(t)}{t\sqrt{65}}, \frac{t\cos(t)}{t\sqrt{65}} \rangle = \langle \frac{8}{\sqrt{65}}, \frac{\sin(t)}{\sqrt{65}}, \frac{\cos(t)}{\sqrt{65}} \rangle. \][/tex]
### Step 4: Find the Derivative of the Unit Tangent Vector [tex]\( T'(t) \)[/tex]
Find the derivative of [tex]\( T(t) \)[/tex] with respect to [tex]\( t \)[/tex]:
[tex]\[ T'(t) = \left\langle \frac{d}{dt} \left( \frac{8}{\sqrt{65}} \right), \frac{d}{dt} \left( \frac{\sin(t)}{\sqrt{65}} \right), \frac{d}{dt} \left( \frac{\cos(t)}{\sqrt{65}} \right) \right\rangle. \][/tex]
Since [tex]\(\frac{8}{\sqrt{65}}\)[/tex] is a constant:
[tex]\[ \frac{d}{dt} \left( \frac{8}{\sqrt{65}} \right) = 0, \][/tex]
[tex]\[ \frac{d}{dt} \left( \frac{\sin(t)}{\sqrt{65}} \right) = \frac{\cos(t)}{\sqrt{65}}, \][/tex]
[tex]\[ \frac{d}{dt} \left( \frac{\cos(t)}{\sqrt{65}} \right) = \frac{-\sin(t)}{\sqrt{65}}. \][/tex]
So,
[tex]\[ T'(t) = \left\langle 0, \frac{\cos(t)}{\sqrt{65}}, \frac{-\sin(t)}{\sqrt{65}} \right\rangle. \][/tex]
### Step 5: Find the Magnitude of [tex]\( T'(t) \)[/tex]
Calculate the magnitude of [tex]\( T'(t) \)[/tex]:
[tex]\[ \| T'(t) \| = \sqrt{0^2 + \left( \frac{\cos(t)}{\sqrt{65}} \right)^2 + \left( \frac{-\sin(t)}{\sqrt{65}} \right)^2}. \][/tex]
Simplify inside the square root:
[tex]\[ \| T'(t) \| = \sqrt{0 + \frac{\cos^2(t)}{65} + \frac{\sin^2(t)}{65}}. \][/tex]
Use the Pythagorean identity again:
[tex]\[ \| T'(t) \| = \sqrt{\frac{\cos^2(t) + \sin^2(t)}{65}} = \sqrt{\frac{1}{65}} = \frac{1}{\sqrt{65}}. \][/tex]
### Step 6: Find the Unit Normal Vector [tex]\( N(t) \)[/tex]
The unit normal vector [tex]\( N(t) \)[/tex] is given by:
[tex]\[ N(t) = \frac{T'(t)}{\| T'(t) \|}. \][/tex]
Substitute [tex]\( T'(t) \)[/tex] and [tex]\( \| T'(t) \| \)[/tex]:
[tex]\[ N(t) = \frac{\left\langle 0, \frac{\cos(t)}{\sqrt{65}}, \frac{-\sin(t)}{\sqrt{65}} \right\rangle}{\frac{1}{\sqrt{65}}}. \][/tex]
Simplify:
[tex]\[ N(t) = \left\langle 0 \cdot \sqrt{65}, \frac{\cos(t)}{\sqrt{65}} \cdot \sqrt{65}, \frac{-\sin(t)}{\sqrt{65}} \cdot \sqrt{65} \right\rangle = \langle 0, \cos(t), -\sin(t) \rangle. \][/tex]
### Summary
To summarize, we have:
[tex]\[ T(t) = \langle \frac{8}{\sqrt{65}}, \frac{\sin(t)}{\sqrt{65}}, \frac{\cos(t)}{\sqrt{65}} \rangle, \][/tex]
[tex]\[ N(t) = \langle 0, \cos(t), -\sin(t) \rangle. \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.