Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Consider the following vector function:

[tex]\[ r(t) = \langle t, t^2, 4 \rangle \][/tex]

(a) Find the unit tangent and unit normal vectors [tex]\( T(t) \)[/tex] and [tex]\( N(t) \)[/tex].

[tex]\[ T(t) = \frac{\langle 1, 2t, 0 \rangle}{\sqrt{1 + 4t^2}} \][/tex]

[tex]\[ N(t) = \square \][/tex]


Sagot :

Let's start by calculating the unit tangent vector [tex]\( T(t) \)[/tex] and the unit normal vector [tex]\( N(t) \)[/tex] for the given vector function [tex]\( r(t) = \langle t, t^2, 4 \rangle \)[/tex].

### Part (a): Finding the Unit Tangent Vector [tex]\( T(t) \)[/tex]

First, we need to find the first derivative of [tex]\( r(t) \)[/tex], which we'll denote as [tex]\( r'(t) \)[/tex]:
[tex]\[ r'(t) = \frac{d}{dt} \langle t, t^2, 4 \rangle = \langle 1, 2t, 0 \rangle \][/tex]

Next, we compute the magnitude of [tex]\( r'(t) \)[/tex]:
[tex]\[ |r'(t)| = \sqrt{1^2 + (2t)^2 + 0^2} = \sqrt{1 + 4t^2} \][/tex]

The unit tangent vector [tex]\( T(t) \)[/tex] is then given by normalizing [tex]\( r'(t) \)[/tex]:
[tex]\[ T(t) = \frac{r'(t)}{|r'(t)|} = \frac{\langle 1, 2t, 0 \rangle}{\sqrt{1 + 4t^2}} = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]

So, we have:
[tex]\[ T(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]

### Part (b): Finding the Unit Normal Vector [tex]\( N(t) \)[/tex]

Now, we need to find the second derivative of [tex]\( r(t) \)[/tex], which we'll denote as [tex]\( r''(t) \)[/tex]:
[tex]\[ r''(t) = \frac{d}{dt} r'(t) = \frac{d}{dt} \langle 1, 2t, 0 \rangle = \langle 0, 2, 0 \rangle \][/tex]

To find the unit normal vector [tex]\( N(t) \)[/tex], we need to project [tex]\( r''(t) \)[/tex] onto the unit tangent vector [tex]\( T(t) \)[/tex] and then subtract this projection from [tex]\( r''(t) \)[/tex] to get the normal component.

First, we compute the dot product [tex]\( T(t) \cdot r''(t) \)[/tex]:
[tex]\[ T(t) \cdot r''(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \cdot \langle 0, 2, 0 \rangle = \frac{2t}{\sqrt{1 + 4t^2}} \times 2 = \frac{4t}{\sqrt{1 + 4t^2}} \][/tex]

Now, we calculate the projection of [tex]\( r''(t) \)[/tex] onto [tex]\( T(t) \)[/tex]:
[tex]\[ \text{Projection} = \left( \frac{4t}{\sqrt{1 + 4t^2}} \right) T(t) = \left( \frac{4t}{\sqrt{1 + 4t^2}} \right) \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle \frac{4t}{(1 + 4t^2)}, \frac{8t^2}{(1 + 4t^2)}, 0 \right\rangle \][/tex]

The normal component of [tex]\( r''(t) \)[/tex] is then:
[tex]\[ \text{Normal Component} = r''(t) - \text{Projection} = \langle 0, 2, 0 \rangle - \left\langle \frac{4t}{(1 + 4t^2)}, \frac{8t^2}{(1 + 4t^2)}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, 2 - \frac{8t^2}{1 + 4t^2}, 0 \right\rangle \][/tex]

Simplify the components:
[tex]\[ \text{Normal Component} = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2(1 + 4t^2) - 8t^2}{1 + 4t^2}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2 + 8t^2 - 8t^2}{1 + 4t^2}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2}{1 + 4t^2}, 0 \right\rangle \][/tex]

Next, we compute the magnitude of the normal component:
[tex]\[ |\text{Normal Component}| = \sqrt{ \left( -\frac{4t}{1 + 4t^2} \right)^2 + \left( \frac{2}{1 + 4t^2} \right)^2 + 0^2 } \][/tex]
[tex]\[ = \sqrt{ \frac{16t^2}{(1 + 4t^2)^2} + \frac{4}{(1 + 4t^2)^2} } = \sqrt{ \frac{16t^2 + 4}{(1 + 4t^2)^2} } = \sqrt{ \frac{4(4t^2 + 1)}{(1 + 4t^2)^2} } = \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2} \][/tex]

Finally, we normalize the normal component to get the unit normal vector [tex]\( N(t) \)[/tex]:
[tex]\[ N(t) = \frac{\left\langle -\frac{4t}{1 + 4t^2}, \frac{2}{1 + 4t^2}, 0 \right\rangle}{\frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}} = \left\langle -\frac{4t}{(1 + 4t^2) \cdot \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}}, \frac{2}{(1 + 4t^2) \cdot \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{2}{2 \sqrt{4t^2 + 1}}, 0 \right\rangle = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{1}{\sqrt{4t^2 + 1}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{2}{2 \sqrt{4t^2 + 1}}, 0 \right\rangle \][/tex]

Thus, we have:
[tex]\[ N(t) = \left\langle -\frac{4t}{(4t^2 + 1)\sqrt{\left(\frac{16t^2}{(4t^2 +1)^2}\right)+ \left(\frac{2 - 8t^2}{4t^2+1}\right)}}, \frac{2 - 8t^2}{(4t^2 + 1)\sqrt{\left(\frac{16t^2}{(4t^2 +1)^2}\right)+ \left(\frac{2 - 8t^2}{4t^2 +1}\right)}}, 0 \right\rangle]\][/tex]
So, the unit normal vector N(t)=
[tex]\[ [ -4t/((4t^{2}+1)\sqrt{16t^{2}/(4t^{2}+1)^{2} + ( -8t^{2}/(4t^{2} +1)+2)^{2}}), \ ( -8t^{2}/(4t^{2}+1)+2)/\sqrt{16t^{2} /(4t^{2} +1)^{2}+(-8t^{2}/4t^{2} +1)^{2}}, \ 0 \][/tex]

Now, we have the unit tangent vector [tex]\(T(t)\)[/tex] and the unit normal vector[tex]\(N(t)\)[/tex]:
[tex]\[ \begin {array}{l} T(t)=\left \langle \frac{1} {\sqrt {4t^{2}+1}}, \ \frac {2t}{\sqrt {4t^{2}+1}}, \ 0 \right \rangle \\ \\ N(t )=[-4t/((4t^{2}+1)\sqrt{16t^{2} /(4t^{2} +1)^{2} + (-8t^{2}/4t^{2}+1) + 2)^{2 }), \ ( -8t^{2}/(4t^{2}+1)+2) /\sqrt{(4t^{2}+2)+ \left ((-8t^{2})^2 \right) }/(4t^{2}+1)), 0] \\ \][/tex]