Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's start by calculating the unit tangent vector [tex]\( T(t) \)[/tex] and the unit normal vector [tex]\( N(t) \)[/tex] for the given vector function [tex]\( r(t) = \langle t, t^2, 4 \rangle \)[/tex].
### Part (a): Finding the Unit Tangent Vector [tex]\( T(t) \)[/tex]
First, we need to find the first derivative of [tex]\( r(t) \)[/tex], which we'll denote as [tex]\( r'(t) \)[/tex]:
[tex]\[ r'(t) = \frac{d}{dt} \langle t, t^2, 4 \rangle = \langle 1, 2t, 0 \rangle \][/tex]
Next, we compute the magnitude of [tex]\( r'(t) \)[/tex]:
[tex]\[ |r'(t)| = \sqrt{1^2 + (2t)^2 + 0^2} = \sqrt{1 + 4t^2} \][/tex]
The unit tangent vector [tex]\( T(t) \)[/tex] is then given by normalizing [tex]\( r'(t) \)[/tex]:
[tex]\[ T(t) = \frac{r'(t)}{|r'(t)|} = \frac{\langle 1, 2t, 0 \rangle}{\sqrt{1 + 4t^2}} = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
So, we have:
[tex]\[ T(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
### Part (b): Finding the Unit Normal Vector [tex]\( N(t) \)[/tex]
Now, we need to find the second derivative of [tex]\( r(t) \)[/tex], which we'll denote as [tex]\( r''(t) \)[/tex]:
[tex]\[ r''(t) = \frac{d}{dt} r'(t) = \frac{d}{dt} \langle 1, 2t, 0 \rangle = \langle 0, 2, 0 \rangle \][/tex]
To find the unit normal vector [tex]\( N(t) \)[/tex], we need to project [tex]\( r''(t) \)[/tex] onto the unit tangent vector [tex]\( T(t) \)[/tex] and then subtract this projection from [tex]\( r''(t) \)[/tex] to get the normal component.
First, we compute the dot product [tex]\( T(t) \cdot r''(t) \)[/tex]:
[tex]\[ T(t) \cdot r''(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \cdot \langle 0, 2, 0 \rangle = \frac{2t}{\sqrt{1 + 4t^2}} \times 2 = \frac{4t}{\sqrt{1 + 4t^2}} \][/tex]
Now, we calculate the projection of [tex]\( r''(t) \)[/tex] onto [tex]\( T(t) \)[/tex]:
[tex]\[ \text{Projection} = \left( \frac{4t}{\sqrt{1 + 4t^2}} \right) T(t) = \left( \frac{4t}{\sqrt{1 + 4t^2}} \right) \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle \frac{4t}{(1 + 4t^2)}, \frac{8t^2}{(1 + 4t^2)}, 0 \right\rangle \][/tex]
The normal component of [tex]\( r''(t) \)[/tex] is then:
[tex]\[ \text{Normal Component} = r''(t) - \text{Projection} = \langle 0, 2, 0 \rangle - \left\langle \frac{4t}{(1 + 4t^2)}, \frac{8t^2}{(1 + 4t^2)}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, 2 - \frac{8t^2}{1 + 4t^2}, 0 \right\rangle \][/tex]
Simplify the components:
[tex]\[ \text{Normal Component} = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2(1 + 4t^2) - 8t^2}{1 + 4t^2}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2 + 8t^2 - 8t^2}{1 + 4t^2}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2}{1 + 4t^2}, 0 \right\rangle \][/tex]
Next, we compute the magnitude of the normal component:
[tex]\[ |\text{Normal Component}| = \sqrt{ \left( -\frac{4t}{1 + 4t^2} \right)^2 + \left( \frac{2}{1 + 4t^2} \right)^2 + 0^2 } \][/tex]
[tex]\[ = \sqrt{ \frac{16t^2}{(1 + 4t^2)^2} + \frac{4}{(1 + 4t^2)^2} } = \sqrt{ \frac{16t^2 + 4}{(1 + 4t^2)^2} } = \sqrt{ \frac{4(4t^2 + 1)}{(1 + 4t^2)^2} } = \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2} \][/tex]
Finally, we normalize the normal component to get the unit normal vector [tex]\( N(t) \)[/tex]:
[tex]\[ N(t) = \frac{\left\langle -\frac{4t}{1 + 4t^2}, \frac{2}{1 + 4t^2}, 0 \right\rangle}{\frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}} = \left\langle -\frac{4t}{(1 + 4t^2) \cdot \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}}, \frac{2}{(1 + 4t^2) \cdot \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{2}{2 \sqrt{4t^2 + 1}}, 0 \right\rangle = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{1}{\sqrt{4t^2 + 1}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{2}{2 \sqrt{4t^2 + 1}}, 0 \right\rangle \][/tex]
Thus, we have:
[tex]\[ N(t) = \left\langle -\frac{4t}{(4t^2 + 1)\sqrt{\left(\frac{16t^2}{(4t^2 +1)^2}\right)+ \left(\frac{2 - 8t^2}{4t^2+1}\right)}}, \frac{2 - 8t^2}{(4t^2 + 1)\sqrt{\left(\frac{16t^2}{(4t^2 +1)^2}\right)+ \left(\frac{2 - 8t^2}{4t^2 +1}\right)}}, 0 \right\rangle]\][/tex]
So, the unit normal vector N(t)=
[tex]\[ [ -4t/((4t^{2}+1)\sqrt{16t^{2}/(4t^{2}+1)^{2} + ( -8t^{2}/(4t^{2} +1)+2)^{2}}), \ ( -8t^{2}/(4t^{2}+1)+2)/\sqrt{16t^{2} /(4t^{2} +1)^{2}+(-8t^{2}/4t^{2} +1)^{2}}, \ 0 \][/tex]
Now, we have the unit tangent vector [tex]\(T(t)\)[/tex] and the unit normal vector[tex]\(N(t)\)[/tex]:
[tex]\[ \begin {array}{l} T(t)=\left \langle \frac{1} {\sqrt {4t^{2}+1}}, \ \frac {2t}{\sqrt {4t^{2}+1}}, \ 0 \right \rangle \\ \\ N(t )=[-4t/((4t^{2}+1)\sqrt{16t^{2} /(4t^{2} +1)^{2} + (-8t^{2}/4t^{2}+1) + 2)^{2 }), \ ( -8t^{2}/(4t^{2}+1)+2) /\sqrt{(4t^{2}+2)+ \left ((-8t^{2})^2 \right) }/(4t^{2}+1)), 0] \\ \][/tex]
### Part (a): Finding the Unit Tangent Vector [tex]\( T(t) \)[/tex]
First, we need to find the first derivative of [tex]\( r(t) \)[/tex], which we'll denote as [tex]\( r'(t) \)[/tex]:
[tex]\[ r'(t) = \frac{d}{dt} \langle t, t^2, 4 \rangle = \langle 1, 2t, 0 \rangle \][/tex]
Next, we compute the magnitude of [tex]\( r'(t) \)[/tex]:
[tex]\[ |r'(t)| = \sqrt{1^2 + (2t)^2 + 0^2} = \sqrt{1 + 4t^2} \][/tex]
The unit tangent vector [tex]\( T(t) \)[/tex] is then given by normalizing [tex]\( r'(t) \)[/tex]:
[tex]\[ T(t) = \frac{r'(t)}{|r'(t)|} = \frac{\langle 1, 2t, 0 \rangle}{\sqrt{1 + 4t^2}} = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
So, we have:
[tex]\[ T(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
### Part (b): Finding the Unit Normal Vector [tex]\( N(t) \)[/tex]
Now, we need to find the second derivative of [tex]\( r(t) \)[/tex], which we'll denote as [tex]\( r''(t) \)[/tex]:
[tex]\[ r''(t) = \frac{d}{dt} r'(t) = \frac{d}{dt} \langle 1, 2t, 0 \rangle = \langle 0, 2, 0 \rangle \][/tex]
To find the unit normal vector [tex]\( N(t) \)[/tex], we need to project [tex]\( r''(t) \)[/tex] onto the unit tangent vector [tex]\( T(t) \)[/tex] and then subtract this projection from [tex]\( r''(t) \)[/tex] to get the normal component.
First, we compute the dot product [tex]\( T(t) \cdot r''(t) \)[/tex]:
[tex]\[ T(t) \cdot r''(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \cdot \langle 0, 2, 0 \rangle = \frac{2t}{\sqrt{1 + 4t^2}} \times 2 = \frac{4t}{\sqrt{1 + 4t^2}} \][/tex]
Now, we calculate the projection of [tex]\( r''(t) \)[/tex] onto [tex]\( T(t) \)[/tex]:
[tex]\[ \text{Projection} = \left( \frac{4t}{\sqrt{1 + 4t^2}} \right) T(t) = \left( \frac{4t}{\sqrt{1 + 4t^2}} \right) \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle \frac{4t}{(1 + 4t^2)}, \frac{8t^2}{(1 + 4t^2)}, 0 \right\rangle \][/tex]
The normal component of [tex]\( r''(t) \)[/tex] is then:
[tex]\[ \text{Normal Component} = r''(t) - \text{Projection} = \langle 0, 2, 0 \rangle - \left\langle \frac{4t}{(1 + 4t^2)}, \frac{8t^2}{(1 + 4t^2)}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, 2 - \frac{8t^2}{1 + 4t^2}, 0 \right\rangle \][/tex]
Simplify the components:
[tex]\[ \text{Normal Component} = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2(1 + 4t^2) - 8t^2}{1 + 4t^2}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2 + 8t^2 - 8t^2}{1 + 4t^2}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2}{1 + 4t^2}, 0 \right\rangle \][/tex]
Next, we compute the magnitude of the normal component:
[tex]\[ |\text{Normal Component}| = \sqrt{ \left( -\frac{4t}{1 + 4t^2} \right)^2 + \left( \frac{2}{1 + 4t^2} \right)^2 + 0^2 } \][/tex]
[tex]\[ = \sqrt{ \frac{16t^2}{(1 + 4t^2)^2} + \frac{4}{(1 + 4t^2)^2} } = \sqrt{ \frac{16t^2 + 4}{(1 + 4t^2)^2} } = \sqrt{ \frac{4(4t^2 + 1)}{(1 + 4t^2)^2} } = \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2} \][/tex]
Finally, we normalize the normal component to get the unit normal vector [tex]\( N(t) \)[/tex]:
[tex]\[ N(t) = \frac{\left\langle -\frac{4t}{1 + 4t^2}, \frac{2}{1 + 4t^2}, 0 \right\rangle}{\frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}} = \left\langle -\frac{4t}{(1 + 4t^2) \cdot \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}}, \frac{2}{(1 + 4t^2) \cdot \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{2}{2 \sqrt{4t^2 + 1}}, 0 \right\rangle = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{1}{\sqrt{4t^2 + 1}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{2}{2 \sqrt{4t^2 + 1}}, 0 \right\rangle \][/tex]
Thus, we have:
[tex]\[ N(t) = \left\langle -\frac{4t}{(4t^2 + 1)\sqrt{\left(\frac{16t^2}{(4t^2 +1)^2}\right)+ \left(\frac{2 - 8t^2}{4t^2+1}\right)}}, \frac{2 - 8t^2}{(4t^2 + 1)\sqrt{\left(\frac{16t^2}{(4t^2 +1)^2}\right)+ \left(\frac{2 - 8t^2}{4t^2 +1}\right)}}, 0 \right\rangle]\][/tex]
So, the unit normal vector N(t)=
[tex]\[ [ -4t/((4t^{2}+1)\sqrt{16t^{2}/(4t^{2}+1)^{2} + ( -8t^{2}/(4t^{2} +1)+2)^{2}}), \ ( -8t^{2}/(4t^{2}+1)+2)/\sqrt{16t^{2} /(4t^{2} +1)^{2}+(-8t^{2}/4t^{2} +1)^{2}}, \ 0 \][/tex]
Now, we have the unit tangent vector [tex]\(T(t)\)[/tex] and the unit normal vector[tex]\(N(t)\)[/tex]:
[tex]\[ \begin {array}{l} T(t)=\left \langle \frac{1} {\sqrt {4t^{2}+1}}, \ \frac {2t}{\sqrt {4t^{2}+1}}, \ 0 \right \rangle \\ \\ N(t )=[-4t/((4t^{2}+1)\sqrt{16t^{2} /(4t^{2} +1)^{2} + (-8t^{2}/4t^{2}+1) + 2)^{2 }), \ ( -8t^{2}/(4t^{2}+1)+2) /\sqrt{(4t^{2}+2)+ \left ((-8t^{2})^2 \right) }/(4t^{2}+1)), 0] \\ \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.