Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's start by calculating the unit tangent vector [tex]\( T(t) \)[/tex] and the unit normal vector [tex]\( N(t) \)[/tex] for the given vector function [tex]\( r(t) = \langle t, t^2, 4 \rangle \)[/tex].
### Part (a): Finding the Unit Tangent Vector [tex]\( T(t) \)[/tex]
First, we need to find the first derivative of [tex]\( r(t) \)[/tex], which we'll denote as [tex]\( r'(t) \)[/tex]:
[tex]\[ r'(t) = \frac{d}{dt} \langle t, t^2, 4 \rangle = \langle 1, 2t, 0 \rangle \][/tex]
Next, we compute the magnitude of [tex]\( r'(t) \)[/tex]:
[tex]\[ |r'(t)| = \sqrt{1^2 + (2t)^2 + 0^2} = \sqrt{1 + 4t^2} \][/tex]
The unit tangent vector [tex]\( T(t) \)[/tex] is then given by normalizing [tex]\( r'(t) \)[/tex]:
[tex]\[ T(t) = \frac{r'(t)}{|r'(t)|} = \frac{\langle 1, 2t, 0 \rangle}{\sqrt{1 + 4t^2}} = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
So, we have:
[tex]\[ T(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
### Part (b): Finding the Unit Normal Vector [tex]\( N(t) \)[/tex]
Now, we need to find the second derivative of [tex]\( r(t) \)[/tex], which we'll denote as [tex]\( r''(t) \)[/tex]:
[tex]\[ r''(t) = \frac{d}{dt} r'(t) = \frac{d}{dt} \langle 1, 2t, 0 \rangle = \langle 0, 2, 0 \rangle \][/tex]
To find the unit normal vector [tex]\( N(t) \)[/tex], we need to project [tex]\( r''(t) \)[/tex] onto the unit tangent vector [tex]\( T(t) \)[/tex] and then subtract this projection from [tex]\( r''(t) \)[/tex] to get the normal component.
First, we compute the dot product [tex]\( T(t) \cdot r''(t) \)[/tex]:
[tex]\[ T(t) \cdot r''(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \cdot \langle 0, 2, 0 \rangle = \frac{2t}{\sqrt{1 + 4t^2}} \times 2 = \frac{4t}{\sqrt{1 + 4t^2}} \][/tex]
Now, we calculate the projection of [tex]\( r''(t) \)[/tex] onto [tex]\( T(t) \)[/tex]:
[tex]\[ \text{Projection} = \left( \frac{4t}{\sqrt{1 + 4t^2}} \right) T(t) = \left( \frac{4t}{\sqrt{1 + 4t^2}} \right) \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle \frac{4t}{(1 + 4t^2)}, \frac{8t^2}{(1 + 4t^2)}, 0 \right\rangle \][/tex]
The normal component of [tex]\( r''(t) \)[/tex] is then:
[tex]\[ \text{Normal Component} = r''(t) - \text{Projection} = \langle 0, 2, 0 \rangle - \left\langle \frac{4t}{(1 + 4t^2)}, \frac{8t^2}{(1 + 4t^2)}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, 2 - \frac{8t^2}{1 + 4t^2}, 0 \right\rangle \][/tex]
Simplify the components:
[tex]\[ \text{Normal Component} = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2(1 + 4t^2) - 8t^2}{1 + 4t^2}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2 + 8t^2 - 8t^2}{1 + 4t^2}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2}{1 + 4t^2}, 0 \right\rangle \][/tex]
Next, we compute the magnitude of the normal component:
[tex]\[ |\text{Normal Component}| = \sqrt{ \left( -\frac{4t}{1 + 4t^2} \right)^2 + \left( \frac{2}{1 + 4t^2} \right)^2 + 0^2 } \][/tex]
[tex]\[ = \sqrt{ \frac{16t^2}{(1 + 4t^2)^2} + \frac{4}{(1 + 4t^2)^2} } = \sqrt{ \frac{16t^2 + 4}{(1 + 4t^2)^2} } = \sqrt{ \frac{4(4t^2 + 1)}{(1 + 4t^2)^2} } = \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2} \][/tex]
Finally, we normalize the normal component to get the unit normal vector [tex]\( N(t) \)[/tex]:
[tex]\[ N(t) = \frac{\left\langle -\frac{4t}{1 + 4t^2}, \frac{2}{1 + 4t^2}, 0 \right\rangle}{\frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}} = \left\langle -\frac{4t}{(1 + 4t^2) \cdot \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}}, \frac{2}{(1 + 4t^2) \cdot \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{2}{2 \sqrt{4t^2 + 1}}, 0 \right\rangle = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{1}{\sqrt{4t^2 + 1}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{2}{2 \sqrt{4t^2 + 1}}, 0 \right\rangle \][/tex]
Thus, we have:
[tex]\[ N(t) = \left\langle -\frac{4t}{(4t^2 + 1)\sqrt{\left(\frac{16t^2}{(4t^2 +1)^2}\right)+ \left(\frac{2 - 8t^2}{4t^2+1}\right)}}, \frac{2 - 8t^2}{(4t^2 + 1)\sqrt{\left(\frac{16t^2}{(4t^2 +1)^2}\right)+ \left(\frac{2 - 8t^2}{4t^2 +1}\right)}}, 0 \right\rangle]\][/tex]
So, the unit normal vector N(t)=
[tex]\[ [ -4t/((4t^{2}+1)\sqrt{16t^{2}/(4t^{2}+1)^{2} + ( -8t^{2}/(4t^{2} +1)+2)^{2}}), \ ( -8t^{2}/(4t^{2}+1)+2)/\sqrt{16t^{2} /(4t^{2} +1)^{2}+(-8t^{2}/4t^{2} +1)^{2}}, \ 0 \][/tex]
Now, we have the unit tangent vector [tex]\(T(t)\)[/tex] and the unit normal vector[tex]\(N(t)\)[/tex]:
[tex]\[ \begin {array}{l} T(t)=\left \langle \frac{1} {\sqrt {4t^{2}+1}}, \ \frac {2t}{\sqrt {4t^{2}+1}}, \ 0 \right \rangle \\ \\ N(t )=[-4t/((4t^{2}+1)\sqrt{16t^{2} /(4t^{2} +1)^{2} + (-8t^{2}/4t^{2}+1) + 2)^{2 }), \ ( -8t^{2}/(4t^{2}+1)+2) /\sqrt{(4t^{2}+2)+ \left ((-8t^{2})^2 \right) }/(4t^{2}+1)), 0] \\ \][/tex]
### Part (a): Finding the Unit Tangent Vector [tex]\( T(t) \)[/tex]
First, we need to find the first derivative of [tex]\( r(t) \)[/tex], which we'll denote as [tex]\( r'(t) \)[/tex]:
[tex]\[ r'(t) = \frac{d}{dt} \langle t, t^2, 4 \rangle = \langle 1, 2t, 0 \rangle \][/tex]
Next, we compute the magnitude of [tex]\( r'(t) \)[/tex]:
[tex]\[ |r'(t)| = \sqrt{1^2 + (2t)^2 + 0^2} = \sqrt{1 + 4t^2} \][/tex]
The unit tangent vector [tex]\( T(t) \)[/tex] is then given by normalizing [tex]\( r'(t) \)[/tex]:
[tex]\[ T(t) = \frac{r'(t)}{|r'(t)|} = \frac{\langle 1, 2t, 0 \rangle}{\sqrt{1 + 4t^2}} = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
So, we have:
[tex]\[ T(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
### Part (b): Finding the Unit Normal Vector [tex]\( N(t) \)[/tex]
Now, we need to find the second derivative of [tex]\( r(t) \)[/tex], which we'll denote as [tex]\( r''(t) \)[/tex]:
[tex]\[ r''(t) = \frac{d}{dt} r'(t) = \frac{d}{dt} \langle 1, 2t, 0 \rangle = \langle 0, 2, 0 \rangle \][/tex]
To find the unit normal vector [tex]\( N(t) \)[/tex], we need to project [tex]\( r''(t) \)[/tex] onto the unit tangent vector [tex]\( T(t) \)[/tex] and then subtract this projection from [tex]\( r''(t) \)[/tex] to get the normal component.
First, we compute the dot product [tex]\( T(t) \cdot r''(t) \)[/tex]:
[tex]\[ T(t) \cdot r''(t) = \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \cdot \langle 0, 2, 0 \rangle = \frac{2t}{\sqrt{1 + 4t^2}} \times 2 = \frac{4t}{\sqrt{1 + 4t^2}} \][/tex]
Now, we calculate the projection of [tex]\( r''(t) \)[/tex] onto [tex]\( T(t) \)[/tex]:
[tex]\[ \text{Projection} = \left( \frac{4t}{\sqrt{1 + 4t^2}} \right) T(t) = \left( \frac{4t}{\sqrt{1 + 4t^2}} \right) \left\langle \frac{1}{\sqrt{1 + 4t^2}}, \frac{2t}{\sqrt{1 + 4t^2}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle \frac{4t}{(1 + 4t^2)}, \frac{8t^2}{(1 + 4t^2)}, 0 \right\rangle \][/tex]
The normal component of [tex]\( r''(t) \)[/tex] is then:
[tex]\[ \text{Normal Component} = r''(t) - \text{Projection} = \langle 0, 2, 0 \rangle - \left\langle \frac{4t}{(1 + 4t^2)}, \frac{8t^2}{(1 + 4t^2)}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, 2 - \frac{8t^2}{1 + 4t^2}, 0 \right\rangle \][/tex]
Simplify the components:
[tex]\[ \text{Normal Component} = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2(1 + 4t^2) - 8t^2}{1 + 4t^2}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2 + 8t^2 - 8t^2}{1 + 4t^2}, 0 \right\rangle = \left\langle -\frac{4t}{1 + 4t^2}, \frac{2}{1 + 4t^2}, 0 \right\rangle \][/tex]
Next, we compute the magnitude of the normal component:
[tex]\[ |\text{Normal Component}| = \sqrt{ \left( -\frac{4t}{1 + 4t^2} \right)^2 + \left( \frac{2}{1 + 4t^2} \right)^2 + 0^2 } \][/tex]
[tex]\[ = \sqrt{ \frac{16t^2}{(1 + 4t^2)^2} + \frac{4}{(1 + 4t^2)^2} } = \sqrt{ \frac{16t^2 + 4}{(1 + 4t^2)^2} } = \sqrt{ \frac{4(4t^2 + 1)}{(1 + 4t^2)^2} } = \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2} \][/tex]
Finally, we normalize the normal component to get the unit normal vector [tex]\( N(t) \)[/tex]:
[tex]\[ N(t) = \frac{\left\langle -\frac{4t}{1 + 4t^2}, \frac{2}{1 + 4t^2}, 0 \right\rangle}{\frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}} = \left\langle -\frac{4t}{(1 + 4t^2) \cdot \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}}, \frac{2}{(1 + 4t^2) \cdot \frac{2 \sqrt{4t^2 + 1}}{1 + 4t^2}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{2}{2 \sqrt{4t^2 + 1}}, 0 \right\rangle = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{1}{\sqrt{4t^2 + 1}}, 0 \right\rangle \][/tex]
[tex]\[ = \left\langle -\frac{4t}{2 \sqrt{4t^2 + 1}}, \frac{2}{2 \sqrt{4t^2 + 1}}, 0 \right\rangle \][/tex]
Thus, we have:
[tex]\[ N(t) = \left\langle -\frac{4t}{(4t^2 + 1)\sqrt{\left(\frac{16t^2}{(4t^2 +1)^2}\right)+ \left(\frac{2 - 8t^2}{4t^2+1}\right)}}, \frac{2 - 8t^2}{(4t^2 + 1)\sqrt{\left(\frac{16t^2}{(4t^2 +1)^2}\right)+ \left(\frac{2 - 8t^2}{4t^2 +1}\right)}}, 0 \right\rangle]\][/tex]
So, the unit normal vector N(t)=
[tex]\[ [ -4t/((4t^{2}+1)\sqrt{16t^{2}/(4t^{2}+1)^{2} + ( -8t^{2}/(4t^{2} +1)+2)^{2}}), \ ( -8t^{2}/(4t^{2}+1)+2)/\sqrt{16t^{2} /(4t^{2} +1)^{2}+(-8t^{2}/4t^{2} +1)^{2}}, \ 0 \][/tex]
Now, we have the unit tangent vector [tex]\(T(t)\)[/tex] and the unit normal vector[tex]\(N(t)\)[/tex]:
[tex]\[ \begin {array}{l} T(t)=\left \langle \frac{1} {\sqrt {4t^{2}+1}}, \ \frac {2t}{\sqrt {4t^{2}+1}}, \ 0 \right \rangle \\ \\ N(t )=[-4t/((4t^{2}+1)\sqrt{16t^{2} /(4t^{2} +1)^{2} + (-8t^{2}/4t^{2}+1) + 2)^{2 }), \ ( -8t^{2}/(4t^{2}+1)+2) /\sqrt{(4t^{2}+2)+ \left ((-8t^{2})^2 \right) }/(4t^{2}+1)), 0] \\ \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.