Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the ratio in which point [tex]\( P \)[/tex] partitions the directed line segment from [tex]\( M \)[/tex] to [tex]\( N \)[/tex], given that [tex]\( P \)[/tex] is [tex]\(\frac{9}{11}\)[/tex] of the distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex]:
1. Understanding the partition:
- Given [tex]\( P \)[/tex] is [tex]\(\frac{9}{11}\)[/tex] of the distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex], we need to understand how many segments or parts from [tex]\( M \)[/tex] this represents relative to the total distance between [tex]\( M \)[/tex] and [tex]\( N \)[/tex].
2. Segment interpretation:
- The line can be thought of as being divided into 11 equal parts.
- Out of these 11 parts, point [tex]\( P \)[/tex] is located 9 parts from [tex]\( M \)[/tex].
3. Remaining segments calculation:
- Since [tex]\( P \)[/tex] is 9 parts from [tex]\( M \)[/tex], to find the remaining segments to reach [tex]\( N \)[/tex], we subtract the 9 parts from the total of 11 parts.
[tex]\[ \text{Remaining segments to } N = 11 - 9 = 2 \][/tex]
4. Ratio formation:
- The distance from [tex]\( M \)[/tex] to [tex]\( P \)[/tex] is 9 parts.
- The distance from [tex]\( P \)[/tex] to [tex]\( N \)[/tex] is 2 parts.
- Therefore, the ratio that point [tex]\( P \)[/tex] partitions the line segment from [tex]\( M \)[/tex] to [tex]\( N \)[/tex] into is [tex]\( 9:2 \)[/tex].
So the correct ratio is [tex]\( 9:2 \)[/tex].
1. Understanding the partition:
- Given [tex]\( P \)[/tex] is [tex]\(\frac{9}{11}\)[/tex] of the distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex], we need to understand how many segments or parts from [tex]\( M \)[/tex] this represents relative to the total distance between [tex]\( M \)[/tex] and [tex]\( N \)[/tex].
2. Segment interpretation:
- The line can be thought of as being divided into 11 equal parts.
- Out of these 11 parts, point [tex]\( P \)[/tex] is located 9 parts from [tex]\( M \)[/tex].
3. Remaining segments calculation:
- Since [tex]\( P \)[/tex] is 9 parts from [tex]\( M \)[/tex], to find the remaining segments to reach [tex]\( N \)[/tex], we subtract the 9 parts from the total of 11 parts.
[tex]\[ \text{Remaining segments to } N = 11 - 9 = 2 \][/tex]
4. Ratio formation:
- The distance from [tex]\( M \)[/tex] to [tex]\( P \)[/tex] is 9 parts.
- The distance from [tex]\( P \)[/tex] to [tex]\( N \)[/tex] is 2 parts.
- Therefore, the ratio that point [tex]\( P \)[/tex] partitions the line segment from [tex]\( M \)[/tex] to [tex]\( N \)[/tex] into is [tex]\( 9:2 \)[/tex].
So the correct ratio is [tex]\( 9:2 \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.