Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's solve the given equation step by step. The equation we have is:
[tex]\[ x = \frac{1}{2 - \frac{1}{2 - \frac{1}{2 - x}}}, \quad x \neq 2 \][/tex]
1. Analyze the Equation:
We need to solve for [tex]\(x\)[/tex] in this nested fraction. Let's start by simplifying the innermost part of the nested fraction.
2. Substitute the Inner Expression:
Let [tex]\( y = \frac{1}{2 - x} \)[/tex]. Then, the equation becomes:
[tex]\[ x = \frac{1}{2 - \frac{1}{2 - y}} \][/tex]
3. Simplifying Further:
Substitute [tex]\( y \)[/tex] back in:
[tex]\[ x = \frac{1}{2 - \frac{1}{2 - \frac{1}{2 - x}}} \][/tex]
4. Introduce New Variable [tex]\( z \)[/tex]:
Let [tex]\( z = \frac{1}{2 - y} \)[/tex], so the equation simplifies to:
[tex]\[ x = \frac{1}{2 - z} \][/tex]
5. Express in Terms of [tex]\( x \)[/tex]:
Reconstruct the equation using the expressions for [tex]\( y \)[/tex] and [tex]\( z \)[/tex]:
[tex]\[ x = \frac{1}{2 - \frac{1}{2 - \frac{1}{2 - x}}} \][/tex]
To simplify manually, replace [tex]\( x \)[/tex]:
[tex]\( z = \frac{1}{2 - x} \)[/tex]:
[tex]\( y = \frac{1}{2 - z} = \frac{1}{2 - \frac{1}{2 - x}} \)[/tex], and so on.
6. Solve Directly:
Assume [tex]\( x = k \)[/tex], substituting and solving sequentially to isolate [tex]\(x\)[/tex]:
Substituting [tex]\( y = \frac{1}{2 - x} \)[/tex]:
[tex]\( x = 1/(2 - 1/(2 - 1/(2 - x))) \)[/tex]
Important Step:
7. Solve the Fraction:
Given [tex]\( x = \frac{1}{2 - \frac{1}{2 - \frac{1}{2 - x}}}\)[/tex], let's assume it converges to a root, leading to our algebraic computation and equality.
[tex]\( lk = \frac{1}{2 - 1/(2 - 1/(2 - x))} \)[/tex] and computing stepwise, the patterns or exact solutions possibly are simplified:
Identify Solutions:
8. Resolving Equation Instances:
After isolating potential solutions verifying variables we have:
[tex]\[ x = 1 \][/tex]
So, the valid solution to the given equation is:
[tex]\[ \boxed{1} \][/tex]
[tex]\[ x = \frac{1}{2 - \frac{1}{2 - \frac{1}{2 - x}}}, \quad x \neq 2 \][/tex]
1. Analyze the Equation:
We need to solve for [tex]\(x\)[/tex] in this nested fraction. Let's start by simplifying the innermost part of the nested fraction.
2. Substitute the Inner Expression:
Let [tex]\( y = \frac{1}{2 - x} \)[/tex]. Then, the equation becomes:
[tex]\[ x = \frac{1}{2 - \frac{1}{2 - y}} \][/tex]
3. Simplifying Further:
Substitute [tex]\( y \)[/tex] back in:
[tex]\[ x = \frac{1}{2 - \frac{1}{2 - \frac{1}{2 - x}}} \][/tex]
4. Introduce New Variable [tex]\( z \)[/tex]:
Let [tex]\( z = \frac{1}{2 - y} \)[/tex], so the equation simplifies to:
[tex]\[ x = \frac{1}{2 - z} \][/tex]
5. Express in Terms of [tex]\( x \)[/tex]:
Reconstruct the equation using the expressions for [tex]\( y \)[/tex] and [tex]\( z \)[/tex]:
[tex]\[ x = \frac{1}{2 - \frac{1}{2 - \frac{1}{2 - x}}} \][/tex]
To simplify manually, replace [tex]\( x \)[/tex]:
[tex]\( z = \frac{1}{2 - x} \)[/tex]:
[tex]\( y = \frac{1}{2 - z} = \frac{1}{2 - \frac{1}{2 - x}} \)[/tex], and so on.
6. Solve Directly:
Assume [tex]\( x = k \)[/tex], substituting and solving sequentially to isolate [tex]\(x\)[/tex]:
Substituting [tex]\( y = \frac{1}{2 - x} \)[/tex]:
[tex]\( x = 1/(2 - 1/(2 - 1/(2 - x))) \)[/tex]
Important Step:
7. Solve the Fraction:
Given [tex]\( x = \frac{1}{2 - \frac{1}{2 - \frac{1}{2 - x}}}\)[/tex], let's assume it converges to a root, leading to our algebraic computation and equality.
[tex]\( lk = \frac{1}{2 - 1/(2 - 1/(2 - x))} \)[/tex] and computing stepwise, the patterns or exact solutions possibly are simplified:
Identify Solutions:
8. Resolving Equation Instances:
After isolating potential solutions verifying variables we have:
[tex]\[ x = 1 \][/tex]
So, the valid solution to the given equation is:
[tex]\[ \boxed{1} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.