Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the approximate measure, in radians, of the central angle corresponding to the arc [tex]\(AB\)[/tex] given that the ratio of the area of the sector [tex]\(AOB\)[/tex] to the area of the circle is [tex]\(\frac{3}{5}\)[/tex], we will follow these steps:
1. Understand the Ratio Given:
- The ratio of the area of the sector [tex]\(AOB\)[/tex] to the area of the entire circle is [tex]\(\frac{3}{5}\)[/tex].
2. Relate Area to Central Angle:
- In a circle, the area of a sector is proportional to its central angle. Specifically, the ratio of the area of the sector to the area of the circle is equivalent to the ratio of the central angle of the sector to the total angle of the circle (which is [tex]\(2\pi\)[/tex] radians for a complete circle).
3. Set Up the Equation:
- Given the ratio [tex]\(\frac{3}{5}\)[/tex], we equate this to the ratio of the central angle [tex]\(\theta\)[/tex] to [tex]\(2\pi\)[/tex]:
[tex]\[ \frac{\text{Area of sector}}{\text{Area of circle}} = \frac{\theta}{2\pi} \][/tex]
[tex]\[ \frac{3}{5} = \frac{\theta}{2\pi} \][/tex]
4. Solve for the Central Angle [tex]\(\theta\)[/tex]:
- Cross-multiply to solve for [tex]\(\theta\)[/tex]:
[tex]\[ \theta = \frac{3}{5} \times 2\pi \][/tex]
Simplify this expression:
[tex]\[ \theta = \frac{6\pi}{5} \][/tex]
To obtain a numeric value, compute:
[tex]\[ \theta \approx \frac{6 \times 3.14159}{5} \][/tex]
[tex]\[ \theta \approx 3.7699111843077517 \][/tex]
5. Round to Two Decimal Places:
- Finally, round [tex]\(\theta\)[/tex] to two decimal places:
[tex]\[ \theta \approx 3.77 \][/tex]
Hence, the approximate measure, in radians, of the central angle corresponding to the arc [tex]\(AB\)[/tex] is [tex]\(\boxed{3.77}\)[/tex], which matches answer choice D.
1. Understand the Ratio Given:
- The ratio of the area of the sector [tex]\(AOB\)[/tex] to the area of the entire circle is [tex]\(\frac{3}{5}\)[/tex].
2. Relate Area to Central Angle:
- In a circle, the area of a sector is proportional to its central angle. Specifically, the ratio of the area of the sector to the area of the circle is equivalent to the ratio of the central angle of the sector to the total angle of the circle (which is [tex]\(2\pi\)[/tex] radians for a complete circle).
3. Set Up the Equation:
- Given the ratio [tex]\(\frac{3}{5}\)[/tex], we equate this to the ratio of the central angle [tex]\(\theta\)[/tex] to [tex]\(2\pi\)[/tex]:
[tex]\[ \frac{\text{Area of sector}}{\text{Area of circle}} = \frac{\theta}{2\pi} \][/tex]
[tex]\[ \frac{3}{5} = \frac{\theta}{2\pi} \][/tex]
4. Solve for the Central Angle [tex]\(\theta\)[/tex]:
- Cross-multiply to solve for [tex]\(\theta\)[/tex]:
[tex]\[ \theta = \frac{3}{5} \times 2\pi \][/tex]
Simplify this expression:
[tex]\[ \theta = \frac{6\pi}{5} \][/tex]
To obtain a numeric value, compute:
[tex]\[ \theta \approx \frac{6 \times 3.14159}{5} \][/tex]
[tex]\[ \theta \approx 3.7699111843077517 \][/tex]
5. Round to Two Decimal Places:
- Finally, round [tex]\(\theta\)[/tex] to two decimal places:
[tex]\[ \theta \approx 3.77 \][/tex]
Hence, the approximate measure, in radians, of the central angle corresponding to the arc [tex]\(AB\)[/tex] is [tex]\(\boxed{3.77}\)[/tex], which matches answer choice D.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.