Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To simplify the given expression [tex]\(\left( \frac{2x}{7} - \frac{7y}{4} \right)^2\)[/tex], follow these steps:
1. Understand the Expression:
The expression inside the square is a difference of fractions:
[tex]\[ \left( \frac{2x}{7} - \frac{7y}{4} \right)^2 \][/tex]
2. Find a Common Denominator:
To add or subtract fractions, find a common denominator. For [tex]\(\frac{2x}{7}\)[/tex] and [tex]\(\frac{7y}{4}\)[/tex], the common denominator is 28. Rewrite each term with this common denominator:
[tex]\[ \frac{2x}{7} = \frac{2x \cdot 4}{7 \cdot 4} = \frac{8x}{28} \][/tex]
[tex]\[ \frac{7y}{4} = \frac{7y \cdot 7}{4 \cdot 7} = \frac{49y}{28} \][/tex]
3. Rewrite the Expression with the Common Denominator:
Now we can rewrite the given expression using the common denominator 28:
[tex]\[ \left( \frac{8x}{28} - \frac{49y}{28} \right)^2 \][/tex]
4. Combine the Fractions:
Since the denominators are now the same, we can combine the terms in the numerator:
[tex]\[ \left( \frac{8x - 49y}{28} \right)^2 \][/tex]
5. Square the Fraction:
To square a fraction, square both the numerator and the denominator separately:
[tex]\[ \left( \frac{8x - 49y}{28} \right)^2 = \frac{(8x - 49y)^2}{28^2} \][/tex]
6. Simplify the Denominator:
The denominator [tex]\(28^2\)[/tex] is:
[tex]\[ 28^2 = 784 \][/tex]
7. Write the Final Simplified Expression:
Therefore, the simplified form of [tex]\(\left( \frac{2x}{7} - \frac{7y}{4} \right)^2\)[/tex] is:
[tex]\[ \frac{(8x - 49y)^2}{784} \][/tex]
The final simplified answer is:
[tex]\[ \boxed{\frac{(8x - 49y)^2}{784}} \][/tex]
1. Understand the Expression:
The expression inside the square is a difference of fractions:
[tex]\[ \left( \frac{2x}{7} - \frac{7y}{4} \right)^2 \][/tex]
2. Find a Common Denominator:
To add or subtract fractions, find a common denominator. For [tex]\(\frac{2x}{7}\)[/tex] and [tex]\(\frac{7y}{4}\)[/tex], the common denominator is 28. Rewrite each term with this common denominator:
[tex]\[ \frac{2x}{7} = \frac{2x \cdot 4}{7 \cdot 4} = \frac{8x}{28} \][/tex]
[tex]\[ \frac{7y}{4} = \frac{7y \cdot 7}{4 \cdot 7} = \frac{49y}{28} \][/tex]
3. Rewrite the Expression with the Common Denominator:
Now we can rewrite the given expression using the common denominator 28:
[tex]\[ \left( \frac{8x}{28} - \frac{49y}{28} \right)^2 \][/tex]
4. Combine the Fractions:
Since the denominators are now the same, we can combine the terms in the numerator:
[tex]\[ \left( \frac{8x - 49y}{28} \right)^2 \][/tex]
5. Square the Fraction:
To square a fraction, square both the numerator and the denominator separately:
[tex]\[ \left( \frac{8x - 49y}{28} \right)^2 = \frac{(8x - 49y)^2}{28^2} \][/tex]
6. Simplify the Denominator:
The denominator [tex]\(28^2\)[/tex] is:
[tex]\[ 28^2 = 784 \][/tex]
7. Write the Final Simplified Expression:
Therefore, the simplified form of [tex]\(\left( \frac{2x}{7} - \frac{7y}{4} \right)^2\)[/tex] is:
[tex]\[ \frac{(8x - 49y)^2}{784} \][/tex]
The final simplified answer is:
[tex]\[ \boxed{\frac{(8x - 49y)^2}{784}} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.