Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let's evaluate the definite integral
[tex]\[ \int_1^2 \left( \frac{x^2}{3} + 7 \right) \, dx \][/tex]
We will break this down into a few steps to find the exact value.
### Step 1: Split the Integral
First, we can split the integral into two separate integrals:
[tex]\[ \int_1^2 \left( \frac{x^2}{3} + 7 \right) dx = \int_1^2 \frac{x^2}{3} \, dx + \int_1^2 7 \, dx \][/tex]
### Step 2: Evaluate Each Integral Separately
#### Integral 1: [tex]\(\int_1^2 \frac{x^2}{3} \, dx\)[/tex]
We can factor out [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ \int_1^2 \frac{x^2}{3} \, dx = \frac{1}{3} \int_1^2 x^2 \, dx \][/tex]
Now, we find the antiderivative of [tex]\(x^2\)[/tex], which is [tex]\(\frac{x^3}{3}\)[/tex]:
[tex]\[ \frac{1}{3} \left[ \frac{x^3}{3} \right]_1^2 = \frac{1}{3} \left( \frac{2^3}{3} - \frac{1^3}{3} \right) = \frac{1}{3} \left( \frac{8}{3} - \frac{1}{3} \right) = \frac{1}{3} \cdot \frac{7}{3} = \frac{7}{9} \][/tex]
#### Integral 2: [tex]\(\int_1^2 7 \, dx\)[/tex]
For this integral, we simply integrate the constant 7:
[tex]\[ \int_1^2 7 \, dx = 7 \left[ x \right]_1^2 = 7 (2 - 1) = 7 (1) = 7 \][/tex]
### Step 3: Combine the Results
Finally, we add the results of the two integrals together:
[tex]\[ \frac{7}{9} + 7 = \frac{7}{9} + \frac{63}{9} = \frac{7 + 63}{9} = \frac{70}{9} \][/tex]
Thus, the exact value of the definite integral
[tex]\[ \int_1^2 \left( \frac{x^2}{3} + 7 \right) dx \][/tex]
is
[tex]\[ \boxed{\frac{70}{9}} \][/tex]
[tex]\[ \int_1^2 \left( \frac{x^2}{3} + 7 \right) \, dx \][/tex]
We will break this down into a few steps to find the exact value.
### Step 1: Split the Integral
First, we can split the integral into two separate integrals:
[tex]\[ \int_1^2 \left( \frac{x^2}{3} + 7 \right) dx = \int_1^2 \frac{x^2}{3} \, dx + \int_1^2 7 \, dx \][/tex]
### Step 2: Evaluate Each Integral Separately
#### Integral 1: [tex]\(\int_1^2 \frac{x^2}{3} \, dx\)[/tex]
We can factor out [tex]\(\frac{1}{3}\)[/tex]:
[tex]\[ \int_1^2 \frac{x^2}{3} \, dx = \frac{1}{3} \int_1^2 x^2 \, dx \][/tex]
Now, we find the antiderivative of [tex]\(x^2\)[/tex], which is [tex]\(\frac{x^3}{3}\)[/tex]:
[tex]\[ \frac{1}{3} \left[ \frac{x^3}{3} \right]_1^2 = \frac{1}{3} \left( \frac{2^3}{3} - \frac{1^3}{3} \right) = \frac{1}{3} \left( \frac{8}{3} - \frac{1}{3} \right) = \frac{1}{3} \cdot \frac{7}{3} = \frac{7}{9} \][/tex]
#### Integral 2: [tex]\(\int_1^2 7 \, dx\)[/tex]
For this integral, we simply integrate the constant 7:
[tex]\[ \int_1^2 7 \, dx = 7 \left[ x \right]_1^2 = 7 (2 - 1) = 7 (1) = 7 \][/tex]
### Step 3: Combine the Results
Finally, we add the results of the two integrals together:
[tex]\[ \frac{7}{9} + 7 = \frac{7}{9} + \frac{63}{9} = \frac{7 + 63}{9} = \frac{70}{9} \][/tex]
Thus, the exact value of the definite integral
[tex]\[ \int_1^2 \left( \frac{x^2}{3} + 7 \right) dx \][/tex]
is
[tex]\[ \boxed{\frac{70}{9}} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.