At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the value of [tex]\( i^{84} \)[/tex], we start by recalling the fundamental properties of the imaginary unit [tex]\( i \)[/tex]. The imaginary unit [tex]\( i \)[/tex] is defined such that [tex]\( i = \sqrt{-1} \)[/tex]. Key powers of [tex]\( i \)[/tex] exhibit a repeating pattern every four exponents:
[tex]\[ i^1 = i \][/tex]
[tex]\[ i^2 = -1 \][/tex]
[tex]\[ i^3 = -i \][/tex]
[tex]\[ i^4 = 1 \][/tex]
Given that the powers of [tex]\( i \)[/tex] repeat every four exponents, we can utilize this periodicity to determine [tex]\( i^{84} \)[/tex]. Specifically, we observe the cycle [tex]\( i^1, i^2, i^3, i^4 \)[/tex] repeats.
To find [tex]\( i^{84} \)[/tex], we can reduce the exponent by applying modulo 4, because every four exponents, the cycle starts anew:
[tex]\[ 84 \mod 4 = 0 \][/tex]
This tells us that 84 is exactly divisible by 4, meaning [tex]\( i^{84} \)[/tex] falls at the same position in the cycle as [tex]\( i^0 \)[/tex] (which would be another way to express [tex]\( i^4 \)[/tex]).
From the repeating pattern, we observe:
[tex]\[ i^4 = 1 \][/tex]
Therefore, since [tex]\( 84 \equiv 0 \mod 4 \)[/tex], we find that:
[tex]\[ i^{84} = i^0 = (i^4)^{21} = 1^{21} = 1. \][/tex]
Thus, the value of [tex]\( i^{84} \)[/tex] is [tex]\( 1 \)[/tex].
Hence, the correct answer is [tex]\( \boxed{1} \)[/tex].
[tex]\[ i^1 = i \][/tex]
[tex]\[ i^2 = -1 \][/tex]
[tex]\[ i^3 = -i \][/tex]
[tex]\[ i^4 = 1 \][/tex]
Given that the powers of [tex]\( i \)[/tex] repeat every four exponents, we can utilize this periodicity to determine [tex]\( i^{84} \)[/tex]. Specifically, we observe the cycle [tex]\( i^1, i^2, i^3, i^4 \)[/tex] repeats.
To find [tex]\( i^{84} \)[/tex], we can reduce the exponent by applying modulo 4, because every four exponents, the cycle starts anew:
[tex]\[ 84 \mod 4 = 0 \][/tex]
This tells us that 84 is exactly divisible by 4, meaning [tex]\( i^{84} \)[/tex] falls at the same position in the cycle as [tex]\( i^0 \)[/tex] (which would be another way to express [tex]\( i^4 \)[/tex]).
From the repeating pattern, we observe:
[tex]\[ i^4 = 1 \][/tex]
Therefore, since [tex]\( 84 \equiv 0 \mod 4 \)[/tex], we find that:
[tex]\[ i^{84} = i^0 = (i^4)^{21} = 1^{21} = 1. \][/tex]
Thus, the value of [tex]\( i^{84} \)[/tex] is [tex]\( 1 \)[/tex].
Hence, the correct answer is [tex]\( \boxed{1} \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.