Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's solve this problem step by step.
We are given the following information:
- Mass of the substance, [tex]\( m = 0.158 \, \text{kg} \)[/tex]
- Heat added, [tex]\( q = 2510.0 \, \text{J} \)[/tex]
- Initial temperature, [tex]\( T_{\text{initial}} = 32.0 \, ^\circ \text{C} \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} = 61.0 \, ^\circ \text{C} \)[/tex]
We need to find the specific heat capacity [tex]\( C_p \)[/tex] of the substance.
First, calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 61.0^\circ \text{C} - 32.0^\circ \text{C} \][/tex]
[tex]\[ \Delta T = 29.0^\circ \text{C} \][/tex]
Next, we need to convert the mass from kilograms to grams since the potential answers for specific heat capacity are given in units of [tex]\( J / (g \cdot ^\circ C) \)[/tex]:
[tex]\[ 1 \, \text{kg} = 1000 \, \text{g} \][/tex]
[tex]\[ m = 0.158 \, \text{kg} \times 1000 \, \text{g/kg} = 158.0 \, \text{g} \][/tex]
Now, use the formula [tex]\( q = m C_p \Delta T \)[/tex] to solve for [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{q}{m \Delta T} \][/tex]
[tex]\[ C_p = \frac{2510.0 \, \text{J}}{158.0 \, \text{g} \times 29.0^\circ \text{C}} \][/tex]
Perform the division:
[tex]\[ C_p = \frac{2510.0}{4582.0} \][/tex]
[tex]\[ C_p \approx 0.5478 \, J / (g \cdot ^\circ C) \][/tex]
Thus, the specific heat capacity of the substance is approximately [tex]\( 0.548 \, J / (g \cdot ^\circ C) \)[/tex]. The closest answer is:
[tex]\[ \boxed{0.548 \, J / (g \cdot ^\circ C)} \][/tex]
We are given the following information:
- Mass of the substance, [tex]\( m = 0.158 \, \text{kg} \)[/tex]
- Heat added, [tex]\( q = 2510.0 \, \text{J} \)[/tex]
- Initial temperature, [tex]\( T_{\text{initial}} = 32.0 \, ^\circ \text{C} \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} = 61.0 \, ^\circ \text{C} \)[/tex]
We need to find the specific heat capacity [tex]\( C_p \)[/tex] of the substance.
First, calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 61.0^\circ \text{C} - 32.0^\circ \text{C} \][/tex]
[tex]\[ \Delta T = 29.0^\circ \text{C} \][/tex]
Next, we need to convert the mass from kilograms to grams since the potential answers for specific heat capacity are given in units of [tex]\( J / (g \cdot ^\circ C) \)[/tex]:
[tex]\[ 1 \, \text{kg} = 1000 \, \text{g} \][/tex]
[tex]\[ m = 0.158 \, \text{kg} \times 1000 \, \text{g/kg} = 158.0 \, \text{g} \][/tex]
Now, use the formula [tex]\( q = m C_p \Delta T \)[/tex] to solve for [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{q}{m \Delta T} \][/tex]
[tex]\[ C_p = \frac{2510.0 \, \text{J}}{158.0 \, \text{g} \times 29.0^\circ \text{C}} \][/tex]
Perform the division:
[tex]\[ C_p = \frac{2510.0}{4582.0} \][/tex]
[tex]\[ C_p \approx 0.5478 \, J / (g \cdot ^\circ C) \][/tex]
Thus, the specific heat capacity of the substance is approximately [tex]\( 0.548 \, J / (g \cdot ^\circ C) \)[/tex]. The closest answer is:
[tex]\[ \boxed{0.548 \, J / (g \cdot ^\circ C)} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.