Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Triangle [tex]\(ABC\)[/tex] has vertices [tex]\(A(-3, 1)\)[/tex], [tex]\(B(-3, 4)\)[/tex], and [tex]\(C(-7, 1)\)[/tex].

1. Part A: If [tex]\(\triangle ABC\)[/tex] is translated according to the rule [tex]\((x, y) \rightarrow (x-4, y+3)\)[/tex] to form [tex]\(\triangle A'B'C'\)[/tex], how is the translation described in words?

2. Part B: Where are the vertices of [tex]\(\triangle A'B'C'\)[/tex] located? Show your work or explain your steps.

3. Part C: Triangle [tex]\(\triangle A'B'C'\)[/tex] is rotated [tex]\(90^\circ\)[/tex] clockwise about the origin to form [tex]\(\triangle A''B''C''\)[/tex]. Is [tex]\(\triangle ABC\)[/tex] congruent to [tex]\(\triangle A''B''C''\)[/tex]? Give details to support your answer.


Sagot :

Sure, let's solve the problem step by step.

### Part A: Translation Description

Given the translation rule [tex]\((x, y) \rightarrow (x - 4, y + 3)\)[/tex], we need to describe this in words.

Answer:
The translation can be described as "moving each point 4 units to the left and 3 units up."

### Part B: Determining the Vertices of [tex]\(\triangle A'B'C'\)[/tex]

To find the new coordinates of the vertices after translation, we apply the translation rule to each vertex of triangle [tex]\(ABC\)[/tex].

1. For vertex [tex]\(A(-3, 1)\)[/tex]:
[tex]\[ A' = (-3 - 4, 1 + 3) = (-7, 4) \][/tex]

2. For vertex [tex]\(B(-3, 4)\)[/tex]:
[tex]\[ B' = (-3 - 4, 4 + 3) = (-7, 7) \][/tex]

3. For vertex [tex]\(C(-7, 1)\)[/tex]:
[tex]\[ C' = (-7 - 4, 1 + 3) = (-11, 4) \][/tex]

Answer:
The vertices of [tex]\(\triangle A'B'C'\)[/tex] are located at:
- [tex]\(A'(-7, 4)\)[/tex]
- [tex]\(B'(-7, 7)\)[/tex]
- [tex]\(C'(-11, 4)\)[/tex]

### Part C: Rotation and Congruency

To rotate [tex]\(\triangle A'B'C'\)[/tex] 90 degrees clockwise about the origin, we use the rotation rule [tex]\((x, y) \rightarrow (y, -x)\)[/tex].

1. For vertex [tex]\(A'(-7, 4)\)[/tex]:
[tex]\[ A'' = (4, -(-7)) = (4, 7) \][/tex]

2. For vertex [tex]\(B'(-7, 7)\)[/tex]:
[tex]\[ B'' = (7, -(-7)) = (7, 7) \][/tex]

3. For vertex [tex]\(C'(-11, 4)\)[/tex]:
[tex]\[ C'' = (4, -(-11)) = (4, 11) \][/tex]

Are [tex]\(\triangle ABC\)[/tex] and [tex]\(\triangle A'' B'' C''\)[/tex] congruent?

To check for congruency, we need to compare the side lengths of both triangles. The side lengths of [tex]\(\triangle ABC\)[/tex] are:

1. Side [tex]\(AB\)[/tex]:
[tex]\[ AB = \sqrt{((-3) - (-3))^2 + (4 - 1)^2} = \sqrt{0 + 3^2} = 3 \][/tex]

2. Side [tex]\(BC\)[/tex]:
[tex]\[ BC = \sqrt{((-7) - (-3))^2 + (1 - 4)^2} = \sqrt{(-4)^2 + (-3)^2} = \sqrt{16 + 9} = 5 \][/tex]

3. Side [tex]\(CA\)[/tex]:
[tex]\[ CA = \sqrt{((-3) - (-7))^2 + (1 - 1)^2} = \sqrt{4^2 + 0} = 4 \][/tex]

The side lengths of [tex]\(\triangle A''B''C''\)[/tex] are the same as the side lengths of [tex]\(\triangle A'B'C'\)[/tex], since translation and rotation are rigid transformations (they don’t change side lengths).

Answer:
Since the side lengths of [tex]\(\triangle ABC\)[/tex] and [tex]\(\triangle A''B''C''\)[/tex] are the same ([tex]\(AB = A''B'' = 3\)[/tex], [tex]\(BC = B''C'' = 5\)[/tex], [tex]\(CA = C''A'' = 4\)[/tex]), we can conclude that:
[tex]\[ \triangle ABC \text{ is congruent to } \triangle A''B''C'' \][/tex]
Hence, [tex]\(\triangle A B C\)[/tex] is congruent to [tex]\(\triangle A'' B'' C''\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.