Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the number of carbon dioxide ([tex]\( \text{CO}_2 \)[/tex]) molecules produced per octane ([tex]\( \text{C}_8\text{H}_{18} \)[/tex]) molecule burned in a combustion reaction, we need to first balance the given reaction:
[tex]\[ \text{C}_8\text{H}_{18} + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{heat} \][/tex]
Here are the steps:
1. Balance the Carbon Atoms:
- Octane ([tex]\( \text{C}_8\text{H}_{18} \)[/tex]) has 8 carbon atoms.
- To balance the carbons, each of these carbon atoms will form one molecule of carbon dioxide ([tex]\( \text{CO}_2 \)[/tex]).
- Therefore, we'll need 8 [tex]\(\text{CO}_2 \)[/tex] molecules to balance the carbon atoms on both sides.
The equation becomes:
[tex]\[ \text{C}_8\text{H}_{18} + \text{O}_2 \rightarrow 8\text{CO}_2 + \text{H}_2\text{O} \][/tex]
2. Balance the Hydrogen Atoms:
- Octane has 18 hydrogen atoms ([tex]\( \text{H}_{18} \)[/tex]).
- Water ([tex]\( \text{H}_2\text{O} \)[/tex]) has 2 hydrogen atoms per molecule.
- To balance the 18 hydrogen atoms, we'll need 9 water molecules [tex]\((\text{H}_2\text{O})\)[/tex].
The equation now becomes:
[tex]\[ \text{C}_8\text{H}_{18} + \text{O}_2 \rightarrow 8\text{CO}_2 + 9\text{H}_2\text{O} \][/tex]
3. Balance the Oxygen Atoms:
- On the product side, we have:
- 8 molecules of [tex]\(\text{CO}_2\)[/tex] contribute [tex]\(8 \times 2 = 16\)[/tex] oxygen atoms.
- 9 molecules of [tex]\(\text{H}_2\text{O}\)[/tex] contribute [tex]\(9 \times 1 = 9\)[/tex] oxygen atoms.
- In total, [tex]\(16 + 9 = 25\)[/tex] oxygen atoms are needed.
- Since [tex]\(\text{O}_2\)[/tex] is diatomic (each molecule contains 2 oxygen atoms), we will need [tex]\(\frac{25}{2} = 12.5\)[/tex] molecules of [tex]\(\text{O}_2\)[/tex] to provide the necessary oxygen atoms.
So, the balanced equation is:
[tex]\[ \text{C}_8\text{H}_{18} + 12.5\text{O}_2 \rightarrow 8\text{CO}_2 + 9\text{H}_2\text{O} \][/tex]
Now that the reaction is fully balanced, we can clearly see that for every molecule of octane ([tex]\(\text{C}_8\text{H}_{18}\)[/tex]) burned, 8 molecules of carbon dioxide ([tex]\(\text{CO}_2\)[/tex]) are produced.
Thus, the correct answer is:
C. 8
[tex]\[ \text{C}_8\text{H}_{18} + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{heat} \][/tex]
Here are the steps:
1. Balance the Carbon Atoms:
- Octane ([tex]\( \text{C}_8\text{H}_{18} \)[/tex]) has 8 carbon atoms.
- To balance the carbons, each of these carbon atoms will form one molecule of carbon dioxide ([tex]\( \text{CO}_2 \)[/tex]).
- Therefore, we'll need 8 [tex]\(\text{CO}_2 \)[/tex] molecules to balance the carbon atoms on both sides.
The equation becomes:
[tex]\[ \text{C}_8\text{H}_{18} + \text{O}_2 \rightarrow 8\text{CO}_2 + \text{H}_2\text{O} \][/tex]
2. Balance the Hydrogen Atoms:
- Octane has 18 hydrogen atoms ([tex]\( \text{H}_{18} \)[/tex]).
- Water ([tex]\( \text{H}_2\text{O} \)[/tex]) has 2 hydrogen atoms per molecule.
- To balance the 18 hydrogen atoms, we'll need 9 water molecules [tex]\((\text{H}_2\text{O})\)[/tex].
The equation now becomes:
[tex]\[ \text{C}_8\text{H}_{18} + \text{O}_2 \rightarrow 8\text{CO}_2 + 9\text{H}_2\text{O} \][/tex]
3. Balance the Oxygen Atoms:
- On the product side, we have:
- 8 molecules of [tex]\(\text{CO}_2\)[/tex] contribute [tex]\(8 \times 2 = 16\)[/tex] oxygen atoms.
- 9 molecules of [tex]\(\text{H}_2\text{O}\)[/tex] contribute [tex]\(9 \times 1 = 9\)[/tex] oxygen atoms.
- In total, [tex]\(16 + 9 = 25\)[/tex] oxygen atoms are needed.
- Since [tex]\(\text{O}_2\)[/tex] is diatomic (each molecule contains 2 oxygen atoms), we will need [tex]\(\frac{25}{2} = 12.5\)[/tex] molecules of [tex]\(\text{O}_2\)[/tex] to provide the necessary oxygen atoms.
So, the balanced equation is:
[tex]\[ \text{C}_8\text{H}_{18} + 12.5\text{O}_2 \rightarrow 8\text{CO}_2 + 9\text{H}_2\text{O} \][/tex]
Now that the reaction is fully balanced, we can clearly see that for every molecule of octane ([tex]\(\text{C}_8\text{H}_{18}\)[/tex]) burned, 8 molecules of carbon dioxide ([tex]\(\text{CO}_2\)[/tex]) are produced.
Thus, the correct answer is:
C. 8
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.