Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

(b) The complex numbers [tex]\( u \)[/tex] and [tex]\( v \)[/tex] are given by [tex]\( u = p + 2i \)[/tex] and [tex]\( v = 1 - 2i \)[/tex], where [tex]\( p \)[/tex] is an integer.

(i) Find [tex]\( \frac{u}{v} \)[/tex] in the form [tex]\( x + iy \)[/tex], where [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are real. Give your answer in its simplest form in terms of [tex]\( p \)[/tex].

(ii) Given that [tex]\( \left| \frac{1}{u} \right| = 13 \)[/tex], find the possible values of [tex]\( p \)[/tex].


Sagot :

Let's tackle this problem step-by-step.

### Part (i) Finding [tex]\(\frac{u}{v}\)[/tex] in the form [tex]\(x + iy\)[/tex]:

Given:
[tex]\[ u = p + 2i \][/tex]
[tex]\[ v = 1 - 2i \][/tex]

We need to find [tex]\(\frac{u}{v}\)[/tex] and express it in the form [tex]\(x + iy\)[/tex].

First, we multiply the numerator and the denominator by the conjugate of the denominator. The conjugate of [tex]\(1 - 2i\)[/tex] is [tex]\(1 + 2i\)[/tex]:

[tex]\[ \frac{u}{v} = \frac{(p + 2i)}{(1 - 2i)} \cdot \frac{(1 + 2i)}{(1 + 2i)} \][/tex]

This simplifies to:
[tex]\[ \frac{(p + 2i)(1 + 2i)}{(1 - 2i)(1 + 2i)} \][/tex]

Now, we evaluate the denominator:
[tex]\[ (1 - 2i)(1 + 2i) = 1^2 - (2i)^2 = 1 - 4(-1) = 1 + 4 = 5 \][/tex]

Next, we evaluate the numerator using the distributive property:
[tex]\[ (p + 2i)(1 + 2i) = p \cdot 1 + p \cdot 2i + 2i \cdot 1 + 2i \cdot 2i \][/tex]
[tex]\[ = p + 2pi + 2i + 4i^2 \][/tex]
Since [tex]\(i^2 = -1\)[/tex], we have:
[tex]\[ = p + 2pi + 2i + 4(-1) \][/tex]
[tex]\[ = p + 2pi + 2i - 4 \][/tex]
[tex]\[ = (p - 4) + 2pi + 2i \][/tex]

Since both [tex]\(p\)[/tex] and [tex]\(2i\)[/tex] are real terms, they can combine:
[tex]\[ = (p - 4) + 2(p + 1)i \][/tex]

Therefore:
[tex]\[ \frac{u}{v} = \frac{(p - 4) + 2(p + 1)i}{5} \][/tex]
[tex]\[ = \frac{p - 4}{5} + \frac{2(p + 1)i}{5} \][/tex]

Thus, in the form [tex]\(x + iy\)[/tex]:
[tex]\[ x = \frac{p - 4}{5} \][/tex]
[tex]\[ y = \frac{2(p + 1)}{5} \][/tex]

### Part (ii) Given [tex]\(\left|\frac{1}{u}\right| = 13\)[/tex], find the possible values of [tex]\(p\)[/tex]:

We know that:
[tex]\[ \left|\frac{1}{u}\right| = 13 \][/tex]

We also know the magnitude of a complex number [tex]\(u = p + 2i\)[/tex] is given by:
[tex]\[ |u| = \sqrt{p^2 + 2^2} = \sqrt{p^2 + 4} \][/tex]

The magnitude of [tex]\(\frac{1}{u}\)[/tex] is:
[tex]\[ \left|\frac{1}{u}\right| = \frac{1}{|u|} = 13 \][/tex]

This implies:
[tex]\[ \frac{1}{|u|} = 13 \][/tex]
[tex]\[ |u| = \frac{1}{13} \][/tex]

Thus:
[tex]\[ \sqrt{p^2 + 4} = \frac{1}{13} \][/tex]

Squaring both sides, we get:
[tex]\[ p^2 + 4 = \left(\frac{1}{13}\right)^2 \][/tex]
[tex]\[ p^2 + 4 = \frac{1}{169} \][/tex]

Then solving for [tex]\(p^2\)[/tex]:
[tex]\[ p^2 + 4 = \frac{1}{169} \][/tex]
[tex]\[ p^2 = \frac{1}{169} - 4 \][/tex]
[tex]\[ p^2 = \frac{1}{169} - \frac{676}{169} \][/tex]
[tex]\[ p^2 = \frac{1 - 676}{169} \][/tex]
[tex]\[ p^2 = \frac{-675}{169} \][/tex]

Since the square of a number cannot be negative, there are no possible real integer solutions for [tex]\(p\)[/tex].

Hence, based on the given conditions, there are no possible integer values of [tex]\(p\)[/tex].