Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the problem of finding the dimensions of the rectangular garden, let's work through it step-by-step:
1. Understand the given information:
- Half the perimeter of the rectangle is 36 meters.
- The length [tex]\( l \)[/tex] is 4 meters more than the width [tex]\( w \)[/tex].
2. Express the full perimeter:
- Since half the perimeter is 36 meters, the full perimeter [tex]\(P\)[/tex] is [tex]\( 36 \times 2 = 72 \)[/tex] meters.
3. Use the formula for the perimeter of a rectangle:
- The formula for the perimeter of a rectangle is [tex]\( P = 2(l + w) \)[/tex].
4. Set up the equation using the given information:
- We know that the length [tex]\( l \)[/tex] is 4 meters more than the width [tex]\( w \)[/tex]. Thus, [tex]\( l = w + 4 \)[/tex].
- Substituting this into the perimeter formula, we get [tex]\( P = 2((w + 4) + w) \)[/tex].
5. Simplify the perimeter equation:
- Substitute the full perimeter value (72 meters): [tex]\( 72 = 2(w + 4 + w) \)[/tex].
- Combine like terms inside the parentheses: [tex]\( 72 = 2(2w + 4) \)[/tex].
6. Distribute and solve for [tex]\( w \)[/tex]:
- Distribute the 2: [tex]\( 72 = 4w + 8 \)[/tex].
- Subtract 8 from both sides: [tex]\( 72 - 8 = 4w \)[/tex].
- Simplify: [tex]\( 64 = 4w \)[/tex].
7. Solve for the width [tex]\( w \)[/tex]:
- Divide both sides by 4: [tex]\( w = \frac{64}{4} = 16 \)[/tex].
8. Find the length [tex]\( l \)[/tex]:
- Since [tex]\( l = w + 4 \)[/tex], substitute [tex]\( w = 16 \)[/tex]: [tex]\( l = 16 + 4 = 20 \)[/tex].
Conclusion:
- The width of the rectangular garden is [tex]\( 16 \)[/tex] meters.
- The length of the rectangular garden is [tex]\( 20 \)[/tex] meters.
1. Understand the given information:
- Half the perimeter of the rectangle is 36 meters.
- The length [tex]\( l \)[/tex] is 4 meters more than the width [tex]\( w \)[/tex].
2. Express the full perimeter:
- Since half the perimeter is 36 meters, the full perimeter [tex]\(P\)[/tex] is [tex]\( 36 \times 2 = 72 \)[/tex] meters.
3. Use the formula for the perimeter of a rectangle:
- The formula for the perimeter of a rectangle is [tex]\( P = 2(l + w) \)[/tex].
4. Set up the equation using the given information:
- We know that the length [tex]\( l \)[/tex] is 4 meters more than the width [tex]\( w \)[/tex]. Thus, [tex]\( l = w + 4 \)[/tex].
- Substituting this into the perimeter formula, we get [tex]\( P = 2((w + 4) + w) \)[/tex].
5. Simplify the perimeter equation:
- Substitute the full perimeter value (72 meters): [tex]\( 72 = 2(w + 4 + w) \)[/tex].
- Combine like terms inside the parentheses: [tex]\( 72 = 2(2w + 4) \)[/tex].
6. Distribute and solve for [tex]\( w \)[/tex]:
- Distribute the 2: [tex]\( 72 = 4w + 8 \)[/tex].
- Subtract 8 from both sides: [tex]\( 72 - 8 = 4w \)[/tex].
- Simplify: [tex]\( 64 = 4w \)[/tex].
7. Solve for the width [tex]\( w \)[/tex]:
- Divide both sides by 4: [tex]\( w = \frac{64}{4} = 16 \)[/tex].
8. Find the length [tex]\( l \)[/tex]:
- Since [tex]\( l = w + 4 \)[/tex], substitute [tex]\( w = 16 \)[/tex]: [tex]\( l = 16 + 4 = 20 \)[/tex].
Conclusion:
- The width of the rectangular garden is [tex]\( 16 \)[/tex] meters.
- The length of the rectangular garden is [tex]\( 20 \)[/tex] meters.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.