At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the problem of finding the dimensions of the rectangular garden, let's work through it step-by-step:
1. Understand the given information:
- Half the perimeter of the rectangle is 36 meters.
- The length [tex]\( l \)[/tex] is 4 meters more than the width [tex]\( w \)[/tex].
2. Express the full perimeter:
- Since half the perimeter is 36 meters, the full perimeter [tex]\(P\)[/tex] is [tex]\( 36 \times 2 = 72 \)[/tex] meters.
3. Use the formula for the perimeter of a rectangle:
- The formula for the perimeter of a rectangle is [tex]\( P = 2(l + w) \)[/tex].
4. Set up the equation using the given information:
- We know that the length [tex]\( l \)[/tex] is 4 meters more than the width [tex]\( w \)[/tex]. Thus, [tex]\( l = w + 4 \)[/tex].
- Substituting this into the perimeter formula, we get [tex]\( P = 2((w + 4) + w) \)[/tex].
5. Simplify the perimeter equation:
- Substitute the full perimeter value (72 meters): [tex]\( 72 = 2(w + 4 + w) \)[/tex].
- Combine like terms inside the parentheses: [tex]\( 72 = 2(2w + 4) \)[/tex].
6. Distribute and solve for [tex]\( w \)[/tex]:
- Distribute the 2: [tex]\( 72 = 4w + 8 \)[/tex].
- Subtract 8 from both sides: [tex]\( 72 - 8 = 4w \)[/tex].
- Simplify: [tex]\( 64 = 4w \)[/tex].
7. Solve for the width [tex]\( w \)[/tex]:
- Divide both sides by 4: [tex]\( w = \frac{64}{4} = 16 \)[/tex].
8. Find the length [tex]\( l \)[/tex]:
- Since [tex]\( l = w + 4 \)[/tex], substitute [tex]\( w = 16 \)[/tex]: [tex]\( l = 16 + 4 = 20 \)[/tex].
Conclusion:
- The width of the rectangular garden is [tex]\( 16 \)[/tex] meters.
- The length of the rectangular garden is [tex]\( 20 \)[/tex] meters.
1. Understand the given information:
- Half the perimeter of the rectangle is 36 meters.
- The length [tex]\( l \)[/tex] is 4 meters more than the width [tex]\( w \)[/tex].
2. Express the full perimeter:
- Since half the perimeter is 36 meters, the full perimeter [tex]\(P\)[/tex] is [tex]\( 36 \times 2 = 72 \)[/tex] meters.
3. Use the formula for the perimeter of a rectangle:
- The formula for the perimeter of a rectangle is [tex]\( P = 2(l + w) \)[/tex].
4. Set up the equation using the given information:
- We know that the length [tex]\( l \)[/tex] is 4 meters more than the width [tex]\( w \)[/tex]. Thus, [tex]\( l = w + 4 \)[/tex].
- Substituting this into the perimeter formula, we get [tex]\( P = 2((w + 4) + w) \)[/tex].
5. Simplify the perimeter equation:
- Substitute the full perimeter value (72 meters): [tex]\( 72 = 2(w + 4 + w) \)[/tex].
- Combine like terms inside the parentheses: [tex]\( 72 = 2(2w + 4) \)[/tex].
6. Distribute and solve for [tex]\( w \)[/tex]:
- Distribute the 2: [tex]\( 72 = 4w + 8 \)[/tex].
- Subtract 8 from both sides: [tex]\( 72 - 8 = 4w \)[/tex].
- Simplify: [tex]\( 64 = 4w \)[/tex].
7. Solve for the width [tex]\( w \)[/tex]:
- Divide both sides by 4: [tex]\( w = \frac{64}{4} = 16 \)[/tex].
8. Find the length [tex]\( l \)[/tex]:
- Since [tex]\( l = w + 4 \)[/tex], substitute [tex]\( w = 16 \)[/tex]: [tex]\( l = 16 + 4 = 20 \)[/tex].
Conclusion:
- The width of the rectangular garden is [tex]\( 16 \)[/tex] meters.
- The length of the rectangular garden is [tex]\( 20 \)[/tex] meters.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.