Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Step-by-step explanation:
Population 1:
Initial population (P0) = 20
Final population (P) = 160
Time (t) = 7 years
We can use the exponential growth model: P(t) = P0ekt
160 = 20e^(7k)
To find the growth rate (k), we can divide both sides by 20:
8 = e^(7k)
Take the natural logarithm of both sides:
ln(8) = 7k
k = ln(8) / 7 ≈ 0.277
So, the growth model for Population 1 is: P(t) = 20e^(0.277t)
Population 2:
Initial population (P0) = 40
Growth rate (k) = half of Population 1's growth rate = 0.277 / 2 = 0.1385
We want to find the time (t) when the two populations are equal in size.
Let's set up an equation using the growth models:
20e^(0.277t) = 40e^(0.1385t)
Divide both sides by 20:
e^(0.277t) = 2e^(0.1385t)
Take the natural logarithm of both sides:
0.277t = ln(2) + 0.1385t
Subtract 0.1385t from both sides:
0.1385t = ln(2)
Divide both sides by 0.1385:
t ≈ 5.03 years
Therefore, the two populations will become equal in size after approximately 5.03 years.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.