At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Step-by-step explanation:
Population 1:
Initial population (P0) = 20
Final population (P) = 160
Time (t) = 7 years
We can use the exponential growth model: P(t) = P0ekt
160 = 20e^(7k)
To find the growth rate (k), we can divide both sides by 20:
8 = e^(7k)
Take the natural logarithm of both sides:
ln(8) = 7k
k = ln(8) / 7 ≈ 0.277
So, the growth model for Population 1 is: P(t) = 20e^(0.277t)
Population 2:
Initial population (P0) = 40
Growth rate (k) = half of Population 1's growth rate = 0.277 / 2 = 0.1385
We want to find the time (t) when the two populations are equal in size.
Let's set up an equation using the growth models:
20e^(0.277t) = 40e^(0.1385t)
Divide both sides by 20:
e^(0.277t) = 2e^(0.1385t)
Take the natural logarithm of both sides:
0.277t = ln(2) + 0.1385t
Subtract 0.1385t from both sides:
0.1385t = ln(2)
Divide both sides by 0.1385:
t ≈ 5.03 years
Therefore, the two populations will become equal in size after approximately 5.03 years.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.
I need help with piecewise functions. How to find the domain and range and how to write it notation.