Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To simplify the expression [tex]\(\sqrt{50 q^9}\)[/tex], we follow these steps:
1. Factor the expression under the square root:
[tex]\[ \sqrt{50 q^9} \][/tex]
We recognize that 50 can be factored into prime factors as [tex]\(50 = 25 \cdot 2\)[/tex], and [tex]\(25\)[/tex] is a perfect square. So we rewrite the expression as:
[tex]\[ \sqrt{25 \cdot 2 \cdot q^9} \][/tex]
2. Split the square root into separate square roots for each factor:
[tex]\[ \sqrt{25 \cdot 2 \cdot q^9} = \sqrt{25} \cdot \sqrt{2} \cdot \sqrt{q^9} \][/tex]
3. Simplify the square root of the perfect square 25:
[tex]\[ \sqrt{25} = 5 \][/tex]
So our expression becomes:
[tex]\[ 5 \cdot \sqrt{2} \cdot \sqrt{q^9} \][/tex]
4. Simplify the square root of [tex]\(q^9\)[/tex]:
[tex]\[ \sqrt{q^9} = q^{9/2} \][/tex]
since the square root of [tex]\(q^n\)[/tex] is [tex]\(q^{n/2}\)[/tex].
5. Combine all parts together:
[tex]\[ 5 \cdot \sqrt{2} \cdot q^{9/2} \][/tex]
Thus, the simplified form of the expression [tex]\(\sqrt{50 q^9}\)[/tex] is:
[tex]\[ 5\sqrt{2} \sqrt{q^9} \][/tex]
And since [tex]\(\sqrt{q^9} = q^{9/2}\)[/tex], we can express the final answer as:
[tex]\[ 5\sqrt{2} \, q^{9/2} \][/tex]
In this specific case, keeping [tex]\(5\sqrt{2}\sqrt{q^9}\)[/tex] is already simplified and sufficient.
1. Factor the expression under the square root:
[tex]\[ \sqrt{50 q^9} \][/tex]
We recognize that 50 can be factored into prime factors as [tex]\(50 = 25 \cdot 2\)[/tex], and [tex]\(25\)[/tex] is a perfect square. So we rewrite the expression as:
[tex]\[ \sqrt{25 \cdot 2 \cdot q^9} \][/tex]
2. Split the square root into separate square roots for each factor:
[tex]\[ \sqrt{25 \cdot 2 \cdot q^9} = \sqrt{25} \cdot \sqrt{2} \cdot \sqrt{q^9} \][/tex]
3. Simplify the square root of the perfect square 25:
[tex]\[ \sqrt{25} = 5 \][/tex]
So our expression becomes:
[tex]\[ 5 \cdot \sqrt{2} \cdot \sqrt{q^9} \][/tex]
4. Simplify the square root of [tex]\(q^9\)[/tex]:
[tex]\[ \sqrt{q^9} = q^{9/2} \][/tex]
since the square root of [tex]\(q^n\)[/tex] is [tex]\(q^{n/2}\)[/tex].
5. Combine all parts together:
[tex]\[ 5 \cdot \sqrt{2} \cdot q^{9/2} \][/tex]
Thus, the simplified form of the expression [tex]\(\sqrt{50 q^9}\)[/tex] is:
[tex]\[ 5\sqrt{2} \sqrt{q^9} \][/tex]
And since [tex]\(\sqrt{q^9} = q^{9/2}\)[/tex], we can express the final answer as:
[tex]\[ 5\sqrt{2} \, q^{9/2} \][/tex]
In this specific case, keeping [tex]\(5\sqrt{2}\sqrt{q^9}\)[/tex] is already simplified and sufficient.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.