Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the slope of a line that is perpendicular to line [tex]\(m\)[/tex], we need to understand the relationship between the slopes of perpendicular lines.
Given:
- Line [tex]\(m\)[/tex] has a slope of [tex]\(\frac{p}{q}\)[/tex], where [tex]\(p > 0\)[/tex], [tex]\(q > 0\)[/tex], and [tex]\(p \neq q\)[/tex].
### Step-by-Step Solution
1. Identify the slope of line [tex]\(m\)[/tex]:
The slope of line [tex]\(m\)[/tex] is given as [tex]\(\frac{p}{q}\)[/tex].
2. Concept of Perpendicular Slopes:
If two lines are perpendicular, then the product of their slopes is [tex]\(-1\)[/tex]. Mathematically, if [tex]\(m_1\)[/tex] is the slope of one line, and [tex]\(m_2\)[/tex] is the slope of a line perpendicular to it, then:
[tex]\[ m_1 \cdot m_2 = -1 \][/tex]
3. Determine the Perpendicular Slope:
- Let [tex]\(m_1 = \frac{p}{q}\)[/tex].
- We need to find [tex]\(m_2\)[/tex], the slope of the line perpendicular to line [tex]\(m\)[/tex].
Using the relationship for perpendicular slopes:
[tex]\[ \frac{p}{q} \cdot m_2 = -1 \][/tex]
4. Solve for [tex]\(m_2\)[/tex]:
[tex]\[ m_2 = -\frac{q}{p} \][/tex]
### Conclusion:
The slope of a line that is perpendicular to line [tex]\(m\)[/tex], which has a slope of [tex]\(\frac{p}{q}\)[/tex], is:
[tex]\[ m_2 = -\frac{q}{p} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{-\frac{q}{p}} \][/tex]
Given:
- Line [tex]\(m\)[/tex] has a slope of [tex]\(\frac{p}{q}\)[/tex], where [tex]\(p > 0\)[/tex], [tex]\(q > 0\)[/tex], and [tex]\(p \neq q\)[/tex].
### Step-by-Step Solution
1. Identify the slope of line [tex]\(m\)[/tex]:
The slope of line [tex]\(m\)[/tex] is given as [tex]\(\frac{p}{q}\)[/tex].
2. Concept of Perpendicular Slopes:
If two lines are perpendicular, then the product of their slopes is [tex]\(-1\)[/tex]. Mathematically, if [tex]\(m_1\)[/tex] is the slope of one line, and [tex]\(m_2\)[/tex] is the slope of a line perpendicular to it, then:
[tex]\[ m_1 \cdot m_2 = -1 \][/tex]
3. Determine the Perpendicular Slope:
- Let [tex]\(m_1 = \frac{p}{q}\)[/tex].
- We need to find [tex]\(m_2\)[/tex], the slope of the line perpendicular to line [tex]\(m\)[/tex].
Using the relationship for perpendicular slopes:
[tex]\[ \frac{p}{q} \cdot m_2 = -1 \][/tex]
4. Solve for [tex]\(m_2\)[/tex]:
[tex]\[ m_2 = -\frac{q}{p} \][/tex]
### Conclusion:
The slope of a line that is perpendicular to line [tex]\(m\)[/tex], which has a slope of [tex]\(\frac{p}{q}\)[/tex], is:
[tex]\[ m_2 = -\frac{q}{p} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{-\frac{q}{p}} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.