Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's solve the given problem step-by-step.
We are given the function [tex]\(93 f(x)\)[/tex] and we want to determine how the graph of this function is related to the graph of the original function [tex]\(f(x)\)[/tex].
### Step 1: Understanding Scaling Factors
When we modify a function by multiplying it by a constant, it affects the graph of the function in a specific way:
- If we multiply the function [tex]\(f(x)\)[/tex] by a constant [tex]\(k\)[/tex]:
- If [tex]\(k > 1\)[/tex], the graph of the function is vertically stretched.
- If [tex]\(0 < k < 1\)[/tex], the graph of the function is vertically compressed.
- If [tex]\(k < 0\)[/tex], the graph is also reflected over the x-axis and then stretched or compressed depending on the magnitude of [tex]\(k\)[/tex].
### Step 2: Application to Our Function
In our case, the constant we are multiplying the function by is 93, which is greater than 1. Therefore:
- The function [tex]\(93 f(x)\)[/tex] is obtained by vertically stretching the graph of [tex]\(f(x)\)[/tex] by a factor of 93.
### Step 3: Evaluating the Options
Given the multiple-choice options:
- Horizontally stretching the graph of [tex]\(f(x)\)[/tex] by a factor of 93
- Horizontally compressing the graph of [tex]\(f(x)\)[/tex] by a factor of 93
- Vertically stretching the graph of [tex]\(f(x)\)[/tex] by a factor of 93
- Vertically compressing the graph of [tex]\(f(x)\)[/tex] by a factor of 93
The correct option is:
- Vertically stretching the graph of [tex]\(f(x)\)[/tex] by a factor of 93
### Conclusion
Therefore, the graph of the function [tex]\(93 f(x)\)[/tex] can be obtained from the graph of [tex]\(y = f(x)\)[/tex] by vertically stretching the graph of [tex]\(f(x)\)[/tex] by a factor of 93.
We are given the function [tex]\(93 f(x)\)[/tex] and we want to determine how the graph of this function is related to the graph of the original function [tex]\(f(x)\)[/tex].
### Step 1: Understanding Scaling Factors
When we modify a function by multiplying it by a constant, it affects the graph of the function in a specific way:
- If we multiply the function [tex]\(f(x)\)[/tex] by a constant [tex]\(k\)[/tex]:
- If [tex]\(k > 1\)[/tex], the graph of the function is vertically stretched.
- If [tex]\(0 < k < 1\)[/tex], the graph of the function is vertically compressed.
- If [tex]\(k < 0\)[/tex], the graph is also reflected over the x-axis and then stretched or compressed depending on the magnitude of [tex]\(k\)[/tex].
### Step 2: Application to Our Function
In our case, the constant we are multiplying the function by is 93, which is greater than 1. Therefore:
- The function [tex]\(93 f(x)\)[/tex] is obtained by vertically stretching the graph of [tex]\(f(x)\)[/tex] by a factor of 93.
### Step 3: Evaluating the Options
Given the multiple-choice options:
- Horizontally stretching the graph of [tex]\(f(x)\)[/tex] by a factor of 93
- Horizontally compressing the graph of [tex]\(f(x)\)[/tex] by a factor of 93
- Vertically stretching the graph of [tex]\(f(x)\)[/tex] by a factor of 93
- Vertically compressing the graph of [tex]\(f(x)\)[/tex] by a factor of 93
The correct option is:
- Vertically stretching the graph of [tex]\(f(x)\)[/tex] by a factor of 93
### Conclusion
Therefore, the graph of the function [tex]\(93 f(x)\)[/tex] can be obtained from the graph of [tex]\(y = f(x)\)[/tex] by vertically stretching the graph of [tex]\(f(x)\)[/tex] by a factor of 93.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.