Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's examine the given functions to find out which of them have a vertex at [tex]\( x = 0 \)[/tex].
Firstly, let's understand what it means for a function [tex]\( f(x) \)[/tex] to have a vertex at a particular [tex]\( x \)[/tex] value. For absolute value functions of the form [tex]\( f(x) = |x - h| + k \)[/tex], the vertex is located at [tex]\( x = h \)[/tex].
We are provided with three functions. Let's evaluate each of them at [tex]\( x = 0 \)[/tex]:
1. Function [tex]\( f(x) = |x| \)[/tex]:
- The function [tex]\( f(x) = |x| \)[/tex] has its vertex at [tex]\( x = 0 \)[/tex] because [tex]\( |0| = 0 \)[/tex]. This implies the minimum value is achieved when [tex]\( x = 0 \)[/tex].
2. Function [tex]\( f(x) = |x + 3| \)[/tex]:
- The value of this function at [tex]\( x = 0 \)[/tex] is [tex]\( |0 + 3| = 3 \)[/tex].
- The vertex of the function [tex]\( f(x) = |x + 3| \)[/tex] occurs when [tex]\( x = -3 \)[/tex], not [tex]\( x = 0 \)[/tex].
3. Function [tex]\( f(x) = |x + 3| - 6 \)[/tex]:
- Evaluating this function at [tex]\( x = 0 \)[/tex], we get [tex]\( |0 + 3| - 6 = 3 - 6 = -3 \)[/tex].
- The vertex of this function, [tex]\( f(x) = |x + 3| - 6 \)[/tex], also occurs at [tex]\( x = -3 \)[/tex], not [tex]\( x = 0 \)[/tex].
Based on these evaluations:
- [tex]\( f(x) = |x| \)[/tex] achieves the minimum value at [tex]\( x = 0 \)[/tex]. So, it has a vertex at [tex]\( x = 0 \)[/tex].
- [tex]\( f(x) = |x + 3| \)[/tex] does not have a vertex at [tex]\( x = 0 \)[/tex].
- [tex]\( f(x) = |x + 3| - 6 \)[/tex] does not have a vertex at [tex]\( x = 0 \)[/tex].
Thus, only the function [tex]\( f(x) = |x| \)[/tex] has a vertex at [tex]\( x = 0 \)[/tex].
The correct option with a vertex at [tex]\( x = 0 \)[/tex] is:
[tex]\[ \boxed{1} \][/tex]
So, the function [tex]\( f(x) = |x| \)[/tex] is the only one that has a vertex with an [tex]\( x \)[/tex]-value of 0.
Firstly, let's understand what it means for a function [tex]\( f(x) \)[/tex] to have a vertex at a particular [tex]\( x \)[/tex] value. For absolute value functions of the form [tex]\( f(x) = |x - h| + k \)[/tex], the vertex is located at [tex]\( x = h \)[/tex].
We are provided with three functions. Let's evaluate each of them at [tex]\( x = 0 \)[/tex]:
1. Function [tex]\( f(x) = |x| \)[/tex]:
- The function [tex]\( f(x) = |x| \)[/tex] has its vertex at [tex]\( x = 0 \)[/tex] because [tex]\( |0| = 0 \)[/tex]. This implies the minimum value is achieved when [tex]\( x = 0 \)[/tex].
2. Function [tex]\( f(x) = |x + 3| \)[/tex]:
- The value of this function at [tex]\( x = 0 \)[/tex] is [tex]\( |0 + 3| = 3 \)[/tex].
- The vertex of the function [tex]\( f(x) = |x + 3| \)[/tex] occurs when [tex]\( x = -3 \)[/tex], not [tex]\( x = 0 \)[/tex].
3. Function [tex]\( f(x) = |x + 3| - 6 \)[/tex]:
- Evaluating this function at [tex]\( x = 0 \)[/tex], we get [tex]\( |0 + 3| - 6 = 3 - 6 = -3 \)[/tex].
- The vertex of this function, [tex]\( f(x) = |x + 3| - 6 \)[/tex], also occurs at [tex]\( x = -3 \)[/tex], not [tex]\( x = 0 \)[/tex].
Based on these evaluations:
- [tex]\( f(x) = |x| \)[/tex] achieves the minimum value at [tex]\( x = 0 \)[/tex]. So, it has a vertex at [tex]\( x = 0 \)[/tex].
- [tex]\( f(x) = |x + 3| \)[/tex] does not have a vertex at [tex]\( x = 0 \)[/tex].
- [tex]\( f(x) = |x + 3| - 6 \)[/tex] does not have a vertex at [tex]\( x = 0 \)[/tex].
Thus, only the function [tex]\( f(x) = |x| \)[/tex] has a vertex at [tex]\( x = 0 \)[/tex].
The correct option with a vertex at [tex]\( x = 0 \)[/tex] is:
[tex]\[ \boxed{1} \][/tex]
So, the function [tex]\( f(x) = |x| \)[/tex] is the only one that has a vertex with an [tex]\( x \)[/tex]-value of 0.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.