Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the range of a vertical translation of the function [tex]\( y = \sqrt[3]{x} \)[/tex], we need to understand both the nature of the original function and how vertical translations affect it.
1. Original Function [tex]\( y = \sqrt[3]{x} \)[/tex]:
- The cube root function, [tex]\( y = \sqrt[3]{x} \)[/tex], is defined for all real numbers [tex]\( x \)[/tex].
- This means that for any real number [tex]\( y \)[/tex], there is some real number [tex]\( x \)[/tex] such that [tex]\( y = \sqrt[3]{x} \)[/tex].
- Therefore, the range of [tex]\( y = \sqrt[3]{x} \)[/tex] is all real numbers, i.e., [tex]\(\{ y \mid y \text{ is a real number}\}\)[/tex].
2. Vertical Translation:
- A vertical translation shifts the graph of a function up or down without changing its basic shape.
- Mathematically, a vertical translation is of the form [tex]\( y = \sqrt[3]{x} + k \)[/tex], where [tex]\( k \)[/tex] is a constant.
- Shifting the function [tex]\( y = \sqrt[3]{x} \)[/tex] vertically by [tex]\( k \)[/tex] units still allows [tex]\( y \)[/tex] to take any real value, because for every [tex]\( y \)[/tex] in the original function, [tex]\( y - k \)[/tex] would also cover all real values.
Hence, the range of the translated function remains unchanged and includes all real numbers.
Therefore, the range of a vertical translation of [tex]\( y = \sqrt[3]{x} \)[/tex] is:
[tex]\(\{ y \mid y \text{ is a real number} \}\)[/tex].
1. Original Function [tex]\( y = \sqrt[3]{x} \)[/tex]:
- The cube root function, [tex]\( y = \sqrt[3]{x} \)[/tex], is defined for all real numbers [tex]\( x \)[/tex].
- This means that for any real number [tex]\( y \)[/tex], there is some real number [tex]\( x \)[/tex] such that [tex]\( y = \sqrt[3]{x} \)[/tex].
- Therefore, the range of [tex]\( y = \sqrt[3]{x} \)[/tex] is all real numbers, i.e., [tex]\(\{ y \mid y \text{ is a real number}\}\)[/tex].
2. Vertical Translation:
- A vertical translation shifts the graph of a function up or down without changing its basic shape.
- Mathematically, a vertical translation is of the form [tex]\( y = \sqrt[3]{x} + k \)[/tex], where [tex]\( k \)[/tex] is a constant.
- Shifting the function [tex]\( y = \sqrt[3]{x} \)[/tex] vertically by [tex]\( k \)[/tex] units still allows [tex]\( y \)[/tex] to take any real value, because for every [tex]\( y \)[/tex] in the original function, [tex]\( y - k \)[/tex] would also cover all real values.
Hence, the range of the translated function remains unchanged and includes all real numbers.
Therefore, the range of a vertical translation of [tex]\( y = \sqrt[3]{x} \)[/tex] is:
[tex]\(\{ y \mid y \text{ is a real number} \}\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.