Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's complete the statements to prove that the sum of the interior angles of [tex]\(\triangle ABC\)[/tex] is [tex]\(180^\circ\)[/tex].
\begin{tabular}{|l|l|}
\hline Statement & Reason \\
\hline Points [tex]$A, B$[/tex], and [tex]$C$[/tex] form a triangle. & given \\
\hline Let [tex]$\overline{D E}$[/tex] be a line passing through [tex]$B$[/tex] and parallel to [tex]$\overline{A C}$[/tex] & definition of parallel lines \\
\hline[tex]$\angle 3 \cong \angle 5$[/tex] and [tex]$\angle 1 \cong \angle 4$[/tex] & alternate interior angles or corresponding angles are equal when lines are parallel \\
\hline [tex]$m \angle 1= m \angle 4$[/tex] and [tex]$m \angle 3= m \angle 5$[/tex] & definition of congruent angles \\
\hline [tex]$m \angle 4+ m \angle 2+ m \angle 5=180^{\circ}$[/tex] & angle addition and definition of a straight line \\
\hline [tex]$m \angle 1+ m \angle 2+ m \angle 3=180^{\circ}$[/tex] & substitution \\
\hline
\end{tabular}
So, by following these logical steps, we can confirm that the sum of the interior angles of [tex]\(\triangle ABC\)[/tex] is indeed [tex]\(180^\circ\)[/tex].
\begin{tabular}{|l|l|}
\hline Statement & Reason \\
\hline Points [tex]$A, B$[/tex], and [tex]$C$[/tex] form a triangle. & given \\
\hline Let [tex]$\overline{D E}$[/tex] be a line passing through [tex]$B$[/tex] and parallel to [tex]$\overline{A C}$[/tex] & definition of parallel lines \\
\hline[tex]$\angle 3 \cong \angle 5$[/tex] and [tex]$\angle 1 \cong \angle 4$[/tex] & alternate interior angles or corresponding angles are equal when lines are parallel \\
\hline [tex]$m \angle 1= m \angle 4$[/tex] and [tex]$m \angle 3= m \angle 5$[/tex] & definition of congruent angles \\
\hline [tex]$m \angle 4+ m \angle 2+ m \angle 5=180^{\circ}$[/tex] & angle addition and definition of a straight line \\
\hline [tex]$m \angle 1+ m \angle 2+ m \angle 3=180^{\circ}$[/tex] & substitution \\
\hline
\end{tabular}
So, by following these logical steps, we can confirm that the sum of the interior angles of [tex]\(\triangle ABC\)[/tex] is indeed [tex]\(180^\circ\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.