Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which of the given expressions are like radicals to [tex]\(\sqrt{11}\)[/tex], we need to compare the expressions' radical parts with [tex]\(\sqrt{11}\)[/tex], or [tex]\(11^{1/2}\)[/tex]. Like radicals have the same radicand (the number under the radical) and the same index (the root).
Given the expressions:
- [tex]\(6 \sqrt[3]{11}\)[/tex]
- [tex]\(x \sqrt{11}\)[/tex]
- [tex]\(2 \sqrt[3]{11}\)[/tex]
- [tex]\(-5 \sqrt[4]{11}\)[/tex]
- [tex]\(-6 \sqrt{11}\)[/tex]
Let's break them down:
1. [tex]\(6 \sqrt[3]{11}\)[/tex]:
- This is [tex]\(6 \times 11^{1/3}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(3\)[/tex].
2. [tex]\(x \sqrt{11}\)[/tex]:
- This is [tex]\(x \times 11^{1/2}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(2\)[/tex].
3. [tex]\(2 \sqrt[3]{11}\)[/tex]:
- This is [tex]\(2 \times 11^{1/3}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(3\)[/tex].
4. [tex]\(-5 \sqrt[4]{11}\)[/tex]:
- This is [tex]\(-5 \times 11^{1/4}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(4\)[/tex].
5. [tex]\(-6 \sqrt{11}\)[/tex]:
- This is [tex]\(-6 \times 11^{1/2}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(2\)[/tex].
To be like radicals to [tex]\(\sqrt{11}\)[/tex] (which is [tex]\(11^{1/2}\)[/tex]), the expressions must have the same radicand [tex]\(11\)[/tex] and same index [tex]\(2\)[/tex].
Comparing all the given expressions, the ones that match [tex]\(\sqrt{11}\)[/tex] are:
- [tex]\(x \sqrt{11}\)[/tex]
- [tex]\(-6 \sqrt{11}\)[/tex]
So, the expressions like radicals to [tex]\(\sqrt{11}\)[/tex] are:
[tex]\[ x \sqrt{11} \][/tex]
[tex]\[ -6 \sqrt{11} \][/tex]
Given the expressions:
- [tex]\(6 \sqrt[3]{11}\)[/tex]
- [tex]\(x \sqrt{11}\)[/tex]
- [tex]\(2 \sqrt[3]{11}\)[/tex]
- [tex]\(-5 \sqrt[4]{11}\)[/tex]
- [tex]\(-6 \sqrt{11}\)[/tex]
Let's break them down:
1. [tex]\(6 \sqrt[3]{11}\)[/tex]:
- This is [tex]\(6 \times 11^{1/3}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(3\)[/tex].
2. [tex]\(x \sqrt{11}\)[/tex]:
- This is [tex]\(x \times 11^{1/2}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(2\)[/tex].
3. [tex]\(2 \sqrt[3]{11}\)[/tex]:
- This is [tex]\(2 \times 11^{1/3}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(3\)[/tex].
4. [tex]\(-5 \sqrt[4]{11}\)[/tex]:
- This is [tex]\(-5 \times 11^{1/4}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(4\)[/tex].
5. [tex]\(-6 \sqrt{11}\)[/tex]:
- This is [tex]\(-6 \times 11^{1/2}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(2\)[/tex].
To be like radicals to [tex]\(\sqrt{11}\)[/tex] (which is [tex]\(11^{1/2}\)[/tex]), the expressions must have the same radicand [tex]\(11\)[/tex] and same index [tex]\(2\)[/tex].
Comparing all the given expressions, the ones that match [tex]\(\sqrt{11}\)[/tex] are:
- [tex]\(x \sqrt{11}\)[/tex]
- [tex]\(-6 \sqrt{11}\)[/tex]
So, the expressions like radicals to [tex]\(\sqrt{11}\)[/tex] are:
[tex]\[ x \sqrt{11} \][/tex]
[tex]\[ -6 \sqrt{11} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.