At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve this problem, we will use Newton's law of universal gravitation, which states that the gravitational force [tex]\(F\)[/tex] between two masses [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] separated by a distance [tex]\(r\)[/tex] is given by:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant, which is approximately [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex].
- [tex]\( m_1 \)[/tex] is the mass of the Earth, [tex]\( 6.0 \times 10^{24} \)[/tex] kg.
- [tex]\( m_2 \)[/tex] is the mass of Jupiter, [tex]\( 1.901 \times 10^{27} \)[/tex] kg.
- [tex]\( r \)[/tex] is the distance between the two planets, [tex]\( 7.5 \times 10^{11} \)[/tex] meters.
Plugging in the values into the formula, we get:
[tex]\[ F = (6.67430 \times 10^{-11}) \frac{(6.0 \times 10^{24}) \cdot (1.901 \times 10^{27})}{(7.5 \times 10^{11})^2} \][/tex]
Let's break this down step by step:
1. Multiply the masses:
[tex]\[ m_1 \cdot m_2 = (6.0 \times 10^{24}) \cdot (1.901 \times 10^{27}) \][/tex]
[tex]\[ = 1.1406 \times 10^{52} \, \text{kg}^2 \][/tex]
2. Square the distance:
[tex]\[ r^2 = (7.5 \times 10^{11})^2 \][/tex]
[tex]\[ = 5.625 \times 10^{23} \, \text{m}^2 \][/tex]
3. Divide the product of the masses by the square of the distance:
[tex]\[ \frac{m_1 \cdot m_2}{r^2} = \frac{1.1406 \times 10^{52}}{5.625 \times 10^{23}} \][/tex]
[tex]\[ = 2.0272 \times 10^{28} \, \text{kg} \cdot \text{m}^{-2} \][/tex]
4. Multiply by the gravitational constant [tex]\(G\)[/tex]:
[tex]\[ F = 6.67430 \times 10^{-11} \times 2.0272 \times 10^{28} \][/tex]
[tex]\[ = 1.3533700586666665 \times 10^{18} \, \text{newtons} \][/tex]
Thus, the force of gravity between Earth and Jupiter is approximately:
[tex]\[ 1.353 \times 10^{18} \, \text{newtons} \][/tex]
Therefore, the correct answer is:
C. [tex]\( 1.352 \times 10^{18} \)[/tex] newtons.
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant, which is approximately [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex].
- [tex]\( m_1 \)[/tex] is the mass of the Earth, [tex]\( 6.0 \times 10^{24} \)[/tex] kg.
- [tex]\( m_2 \)[/tex] is the mass of Jupiter, [tex]\( 1.901 \times 10^{27} \)[/tex] kg.
- [tex]\( r \)[/tex] is the distance between the two planets, [tex]\( 7.5 \times 10^{11} \)[/tex] meters.
Plugging in the values into the formula, we get:
[tex]\[ F = (6.67430 \times 10^{-11}) \frac{(6.0 \times 10^{24}) \cdot (1.901 \times 10^{27})}{(7.5 \times 10^{11})^2} \][/tex]
Let's break this down step by step:
1. Multiply the masses:
[tex]\[ m_1 \cdot m_2 = (6.0 \times 10^{24}) \cdot (1.901 \times 10^{27}) \][/tex]
[tex]\[ = 1.1406 \times 10^{52} \, \text{kg}^2 \][/tex]
2. Square the distance:
[tex]\[ r^2 = (7.5 \times 10^{11})^2 \][/tex]
[tex]\[ = 5.625 \times 10^{23} \, \text{m}^2 \][/tex]
3. Divide the product of the masses by the square of the distance:
[tex]\[ \frac{m_1 \cdot m_2}{r^2} = \frac{1.1406 \times 10^{52}}{5.625 \times 10^{23}} \][/tex]
[tex]\[ = 2.0272 \times 10^{28} \, \text{kg} \cdot \text{m}^{-2} \][/tex]
4. Multiply by the gravitational constant [tex]\(G\)[/tex]:
[tex]\[ F = 6.67430 \times 10^{-11} \times 2.0272 \times 10^{28} \][/tex]
[tex]\[ = 1.3533700586666665 \times 10^{18} \, \text{newtons} \][/tex]
Thus, the force of gravity between Earth and Jupiter is approximately:
[tex]\[ 1.353 \times 10^{18} \, \text{newtons} \][/tex]
Therefore, the correct answer is:
C. [tex]\( 1.352 \times 10^{18} \)[/tex] newtons.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.