Answered

Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Select the correct answer.

What is the force of gravity between Earth (mass [tex]$= 6.0 \times 10^{24}$[/tex] kilograms) and Jupiter (mass [tex]$= 1.901 \times 10^{27}$[/tex] kilograms)? The distance between the two planets is about [tex]$7.5 \times 10^{11}$[/tex] meters.

A. [tex]$2.027 \times 10^{17}$[/tex] newtons
B. [tex]$7.10 \times 10^{17}$[/tex] newtons
C. [tex]$1.352 \times 10^{18}$[/tex] newtons
D. [tex]$1.014 \times 10^{19}$[/tex] newtons
E. [tex]$1.54 \times 10^{19}$[/tex] newtons


Sagot :

To solve this problem, we will use Newton's law of universal gravitation, which states that the gravitational force [tex]\(F\)[/tex] between two masses [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] separated by a distance [tex]\(r\)[/tex] is given by:

[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]

where:
- [tex]\( G \)[/tex] is the gravitational constant, which is approximately [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex].
- [tex]\( m_1 \)[/tex] is the mass of the Earth, [tex]\( 6.0 \times 10^{24} \)[/tex] kg.
- [tex]\( m_2 \)[/tex] is the mass of Jupiter, [tex]\( 1.901 \times 10^{27} \)[/tex] kg.
- [tex]\( r \)[/tex] is the distance between the two planets, [tex]\( 7.5 \times 10^{11} \)[/tex] meters.

Plugging in the values into the formula, we get:

[tex]\[ F = (6.67430 \times 10^{-11}) \frac{(6.0 \times 10^{24}) \cdot (1.901 \times 10^{27})}{(7.5 \times 10^{11})^2} \][/tex]

Let's break this down step by step:

1. Multiply the masses:
[tex]\[ m_1 \cdot m_2 = (6.0 \times 10^{24}) \cdot (1.901 \times 10^{27}) \][/tex]
[tex]\[ = 1.1406 \times 10^{52} \, \text{kg}^2 \][/tex]

2. Square the distance:
[tex]\[ r^2 = (7.5 \times 10^{11})^2 \][/tex]
[tex]\[ = 5.625 \times 10^{23} \, \text{m}^2 \][/tex]

3. Divide the product of the masses by the square of the distance:
[tex]\[ \frac{m_1 \cdot m_2}{r^2} = \frac{1.1406 \times 10^{52}}{5.625 \times 10^{23}} \][/tex]
[tex]\[ = 2.0272 \times 10^{28} \, \text{kg} \cdot \text{m}^{-2} \][/tex]

4. Multiply by the gravitational constant [tex]\(G\)[/tex]:
[tex]\[ F = 6.67430 \times 10^{-11} \times 2.0272 \times 10^{28} \][/tex]
[tex]\[ = 1.3533700586666665 \times 10^{18} \, \text{newtons} \][/tex]

Thus, the force of gravity between Earth and Jupiter is approximately:

[tex]\[ 1.353 \times 10^{18} \, \text{newtons} \][/tex]

Therefore, the correct answer is:

C. [tex]\( 1.352 \times 10^{18} \)[/tex] newtons.