Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve this problem, we will use Newton's law of universal gravitation, which states that the gravitational force [tex]\(F\)[/tex] between two masses [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] separated by a distance [tex]\(r\)[/tex] is given by:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant, which is approximately [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex].
- [tex]\( m_1 \)[/tex] is the mass of the Earth, [tex]\( 6.0 \times 10^{24} \)[/tex] kg.
- [tex]\( m_2 \)[/tex] is the mass of Jupiter, [tex]\( 1.901 \times 10^{27} \)[/tex] kg.
- [tex]\( r \)[/tex] is the distance between the two planets, [tex]\( 7.5 \times 10^{11} \)[/tex] meters.
Plugging in the values into the formula, we get:
[tex]\[ F = (6.67430 \times 10^{-11}) \frac{(6.0 \times 10^{24}) \cdot (1.901 \times 10^{27})}{(7.5 \times 10^{11})^2} \][/tex]
Let's break this down step by step:
1. Multiply the masses:
[tex]\[ m_1 \cdot m_2 = (6.0 \times 10^{24}) \cdot (1.901 \times 10^{27}) \][/tex]
[tex]\[ = 1.1406 \times 10^{52} \, \text{kg}^2 \][/tex]
2. Square the distance:
[tex]\[ r^2 = (7.5 \times 10^{11})^2 \][/tex]
[tex]\[ = 5.625 \times 10^{23} \, \text{m}^2 \][/tex]
3. Divide the product of the masses by the square of the distance:
[tex]\[ \frac{m_1 \cdot m_2}{r^2} = \frac{1.1406 \times 10^{52}}{5.625 \times 10^{23}} \][/tex]
[tex]\[ = 2.0272 \times 10^{28} \, \text{kg} \cdot \text{m}^{-2} \][/tex]
4. Multiply by the gravitational constant [tex]\(G\)[/tex]:
[tex]\[ F = 6.67430 \times 10^{-11} \times 2.0272 \times 10^{28} \][/tex]
[tex]\[ = 1.3533700586666665 \times 10^{18} \, \text{newtons} \][/tex]
Thus, the force of gravity between Earth and Jupiter is approximately:
[tex]\[ 1.353 \times 10^{18} \, \text{newtons} \][/tex]
Therefore, the correct answer is:
C. [tex]\( 1.352 \times 10^{18} \)[/tex] newtons.
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant, which is approximately [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex].
- [tex]\( m_1 \)[/tex] is the mass of the Earth, [tex]\( 6.0 \times 10^{24} \)[/tex] kg.
- [tex]\( m_2 \)[/tex] is the mass of Jupiter, [tex]\( 1.901 \times 10^{27} \)[/tex] kg.
- [tex]\( r \)[/tex] is the distance between the two planets, [tex]\( 7.5 \times 10^{11} \)[/tex] meters.
Plugging in the values into the formula, we get:
[tex]\[ F = (6.67430 \times 10^{-11}) \frac{(6.0 \times 10^{24}) \cdot (1.901 \times 10^{27})}{(7.5 \times 10^{11})^2} \][/tex]
Let's break this down step by step:
1. Multiply the masses:
[tex]\[ m_1 \cdot m_2 = (6.0 \times 10^{24}) \cdot (1.901 \times 10^{27}) \][/tex]
[tex]\[ = 1.1406 \times 10^{52} \, \text{kg}^2 \][/tex]
2. Square the distance:
[tex]\[ r^2 = (7.5 \times 10^{11})^2 \][/tex]
[tex]\[ = 5.625 \times 10^{23} \, \text{m}^2 \][/tex]
3. Divide the product of the masses by the square of the distance:
[tex]\[ \frac{m_1 \cdot m_2}{r^2} = \frac{1.1406 \times 10^{52}}{5.625 \times 10^{23}} \][/tex]
[tex]\[ = 2.0272 \times 10^{28} \, \text{kg} \cdot \text{m}^{-2} \][/tex]
4. Multiply by the gravitational constant [tex]\(G\)[/tex]:
[tex]\[ F = 6.67430 \times 10^{-11} \times 2.0272 \times 10^{28} \][/tex]
[tex]\[ = 1.3533700586666665 \times 10^{18} \, \text{newtons} \][/tex]
Thus, the force of gravity between Earth and Jupiter is approximately:
[tex]\[ 1.353 \times 10^{18} \, \text{newtons} \][/tex]
Therefore, the correct answer is:
C. [tex]\( 1.352 \times 10^{18} \)[/tex] newtons.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.