At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

To eliminate the [tex]\( y \)[/tex]-terms and solve for [tex]\( x \)[/tex] in the fewest steps, by which constants should the equations be multiplied before adding the equations together?

First Equation: [tex]\( 5x - 4y = 28 \)[/tex]
Second Equation: [tex]\( 3x - 9y = 30 \)[/tex]

A. The first equation should be multiplied by 3 and the second equation by 5.
B. The first equation should be multiplied by 3 and the second equation by -5.
C. The first equation should be multiplied by 9 and the second equation by 4.
D. The first equation should be multiplied by 9 and the second equation by -4.


Sagot :

To solve this system of linear equations by eliminating the [tex]$y$[/tex]-terms, we need to manipulate the equations so that the coefficients of [tex]$y$[/tex] in both equations are equal in magnitude but opposite in sign. This allows us to add the equations together, thereby eliminating the [tex]$y$[/tex]-terms and solving for [tex]$x$[/tex].

Given the equations:
1. [tex]\(5x - 4y = 28\)[/tex]
2. [tex]\(3x - 9y = 30\)[/tex]

1. First equation: [tex]\(5x - 4y = 28\)[/tex]
- To make the coefficient of [tex]\(y\)[/tex] suitable for elimination, we can multiply this equation by 3. This results in:
[tex]\[3 \cdot (5x - 4y) = 3 \cdot 28\][/tex]
[tex]\[15x - 12y = 84\][/tex]

2. Second equation: [tex]\(3x - 9y = 30\)[/tex]
- To make the coefficients of [tex]\(y\)[/tex] in the two equations opposite in sign, we should multiply this equation by -5. This results in:
[tex]\[-5 \cdot (3x - 9y) = -5 \cdot 30\][/tex]
[tex]\[-15x + 45y = -150\][/tex]

Now, we have two new equations:
1. [tex]\(15x - 12y = 84\)[/tex]
2. [tex]\(-15x + 45y = -150\)[/tex]

By adding these two equations, we effectively eliminate the [tex]$y$[/tex]-terms:
[tex]\[ (15x - 12y) + (-15x + 45y) = 84 + (-150) \][/tex]
[tex]\[(15x - 15x) + (-12y + 45y) = 84 - 150\][/tex]
[tex]\[0x + 33y = -66\][/tex]

However, the question was specifically about the constants by which the original equations should be multiplied before adding them together to eliminate the [tex]$y$[/tex]-terms. Therefore, the constants are:

- The first equation should be multiplied by [tex]\(3\)[/tex]
- The second equation should be multiplied by [tex]\(-5\)[/tex]

Thus, the correct answer is:
- The first equation should be multiplied by 3 and the second equation by -5.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.