Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this system of linear equations by eliminating the [tex]$y$[/tex]-terms, we need to manipulate the equations so that the coefficients of [tex]$y$[/tex] in both equations are equal in magnitude but opposite in sign. This allows us to add the equations together, thereby eliminating the [tex]$y$[/tex]-terms and solving for [tex]$x$[/tex].
Given the equations:
1. [tex]\(5x - 4y = 28\)[/tex]
2. [tex]\(3x - 9y = 30\)[/tex]
1. First equation: [tex]\(5x - 4y = 28\)[/tex]
- To make the coefficient of [tex]\(y\)[/tex] suitable for elimination, we can multiply this equation by 3. This results in:
[tex]\[3 \cdot (5x - 4y) = 3 \cdot 28\][/tex]
[tex]\[15x - 12y = 84\][/tex]
2. Second equation: [tex]\(3x - 9y = 30\)[/tex]
- To make the coefficients of [tex]\(y\)[/tex] in the two equations opposite in sign, we should multiply this equation by -5. This results in:
[tex]\[-5 \cdot (3x - 9y) = -5 \cdot 30\][/tex]
[tex]\[-15x + 45y = -150\][/tex]
Now, we have two new equations:
1. [tex]\(15x - 12y = 84\)[/tex]
2. [tex]\(-15x + 45y = -150\)[/tex]
By adding these two equations, we effectively eliminate the [tex]$y$[/tex]-terms:
[tex]\[ (15x - 12y) + (-15x + 45y) = 84 + (-150) \][/tex]
[tex]\[(15x - 15x) + (-12y + 45y) = 84 - 150\][/tex]
[tex]\[0x + 33y = -66\][/tex]
However, the question was specifically about the constants by which the original equations should be multiplied before adding them together to eliminate the [tex]$y$[/tex]-terms. Therefore, the constants are:
- The first equation should be multiplied by [tex]\(3\)[/tex]
- The second equation should be multiplied by [tex]\(-5\)[/tex]
Thus, the correct answer is:
- The first equation should be multiplied by 3 and the second equation by -5.
Given the equations:
1. [tex]\(5x - 4y = 28\)[/tex]
2. [tex]\(3x - 9y = 30\)[/tex]
1. First equation: [tex]\(5x - 4y = 28\)[/tex]
- To make the coefficient of [tex]\(y\)[/tex] suitable for elimination, we can multiply this equation by 3. This results in:
[tex]\[3 \cdot (5x - 4y) = 3 \cdot 28\][/tex]
[tex]\[15x - 12y = 84\][/tex]
2. Second equation: [tex]\(3x - 9y = 30\)[/tex]
- To make the coefficients of [tex]\(y\)[/tex] in the two equations opposite in sign, we should multiply this equation by -5. This results in:
[tex]\[-5 \cdot (3x - 9y) = -5 \cdot 30\][/tex]
[tex]\[-15x + 45y = -150\][/tex]
Now, we have two new equations:
1. [tex]\(15x - 12y = 84\)[/tex]
2. [tex]\(-15x + 45y = -150\)[/tex]
By adding these two equations, we effectively eliminate the [tex]$y$[/tex]-terms:
[tex]\[ (15x - 12y) + (-15x + 45y) = 84 + (-150) \][/tex]
[tex]\[(15x - 15x) + (-12y + 45y) = 84 - 150\][/tex]
[tex]\[0x + 33y = -66\][/tex]
However, the question was specifically about the constants by which the original equations should be multiplied before adding them together to eliminate the [tex]$y$[/tex]-terms. Therefore, the constants are:
- The first equation should be multiplied by [tex]\(3\)[/tex]
- The second equation should be multiplied by [tex]\(-5\)[/tex]
Thus, the correct answer is:
- The first equation should be multiplied by 3 and the second equation by -5.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.