Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which radicals are like after simplifying, let's simplify each of the given radical expressions step-by-step.
1. Simplify [tex]\(\sqrt{50 x^2}\)[/tex]:
- [tex]\(\sqrt{50 x^2} = \sqrt{50} \cdot \sqrt{x^2}\)[/tex]
- [tex]\(\sqrt{50}\)[/tex] can be simplified as [tex]\(\sqrt{25 \cdot 2} = \sqrt{25} \cdot \sqrt{2} = 5\sqrt{2}\)[/tex]
- [tex]\(\sqrt{x^2} = x\)[/tex]
- Thus, [tex]\(\sqrt{50 x^2} = 5\sqrt{2} \cdot x\)[/tex]
2. Simplify [tex]\(\sqrt{32 x}\)[/tex]:
- [tex]\(\sqrt{32 x} = \sqrt{32} \cdot \sqrt{x}\)[/tex]
- [tex]\(\sqrt{32}\)[/tex] can be simplified as [tex]\(\sqrt{16 \cdot 2} = \sqrt{16} \cdot \sqrt{2} = 4\sqrt{2}\)[/tex]
- Thus, [tex]\(\sqrt{32 x} = 4\sqrt{2} \cdot \sqrt{x}\)[/tex]
3. Simplify [tex]\(\sqrt{18 n}\)[/tex]:
- [tex]\(\sqrt{18 n} = \sqrt{18} \cdot \sqrt{n}\)[/tex]
- [tex]\(\sqrt{18}\)[/tex] can be simplified as [tex]\(\sqrt{9 \cdot 2} = \sqrt{9} \cdot \sqrt{2} = 3\sqrt{2}\)[/tex]
- Thus, [tex]\(\sqrt{18 n} = 3\sqrt{2} \cdot \sqrt{n}\)[/tex]
4. Simplify [tex]\(\sqrt{72 x^2}\)[/tex]:
- [tex]\(\sqrt{72 x^2} = \sqrt{72} \cdot \sqrt{x^2}\)[/tex]
- [tex]\(\sqrt{72}\)[/tex] can be simplified as [tex]\(\sqrt{36 \cdot 2} = \sqrt{36} \cdot \sqrt{2} = 6\sqrt{2}\)[/tex]
- [tex]\(\sqrt{x^2} = x\)[/tex]
- Thus, [tex]\(\sqrt{72 x^2} = 6\sqrt{2} \cdot x\)[/tex]
Now, let's compare the simplified forms to check for like radicals:
1. [tex]\(\sqrt{50 x^2}\)[/tex] simplifies to [tex]\(5\sqrt{2} \cdot x\)[/tex]
2. [tex]\(\sqrt{32 x}\)[/tex] simplifies to [tex]\(4\sqrt{2} \cdot \sqrt{x}\)[/tex]
3. [tex]\(\sqrt{18 n}\)[/tex] simplifies to [tex]\(3\sqrt{2} \cdot \sqrt{n}\)[/tex]
4. [tex]\(\sqrt{72 x^2}\)[/tex] simplifies to [tex]\(6\sqrt{2} \cdot x\)[/tex]
For radicals to be like, their radicands must be identical. In this case:
- [tex]\(5\sqrt{2} \cdot x\)[/tex] and [tex]\(6\sqrt{2} \cdot x\)[/tex] both have [tex]\(\sqrt{2}\cdot x\)[/tex] as a part of the expression but differ by coefficients 5 and 6. Despite simplifying to show similar forms internally, they cannot be directly combined as 'like' radicals.
Hence, none of these simplified radical expressions are like radicals after simplification.
1. Simplify [tex]\(\sqrt{50 x^2}\)[/tex]:
- [tex]\(\sqrt{50 x^2} = \sqrt{50} \cdot \sqrt{x^2}\)[/tex]
- [tex]\(\sqrt{50}\)[/tex] can be simplified as [tex]\(\sqrt{25 \cdot 2} = \sqrt{25} \cdot \sqrt{2} = 5\sqrt{2}\)[/tex]
- [tex]\(\sqrt{x^2} = x\)[/tex]
- Thus, [tex]\(\sqrt{50 x^2} = 5\sqrt{2} \cdot x\)[/tex]
2. Simplify [tex]\(\sqrt{32 x}\)[/tex]:
- [tex]\(\sqrt{32 x} = \sqrt{32} \cdot \sqrt{x}\)[/tex]
- [tex]\(\sqrt{32}\)[/tex] can be simplified as [tex]\(\sqrt{16 \cdot 2} = \sqrt{16} \cdot \sqrt{2} = 4\sqrt{2}\)[/tex]
- Thus, [tex]\(\sqrt{32 x} = 4\sqrt{2} \cdot \sqrt{x}\)[/tex]
3. Simplify [tex]\(\sqrt{18 n}\)[/tex]:
- [tex]\(\sqrt{18 n} = \sqrt{18} \cdot \sqrt{n}\)[/tex]
- [tex]\(\sqrt{18}\)[/tex] can be simplified as [tex]\(\sqrt{9 \cdot 2} = \sqrt{9} \cdot \sqrt{2} = 3\sqrt{2}\)[/tex]
- Thus, [tex]\(\sqrt{18 n} = 3\sqrt{2} \cdot \sqrt{n}\)[/tex]
4. Simplify [tex]\(\sqrt{72 x^2}\)[/tex]:
- [tex]\(\sqrt{72 x^2} = \sqrt{72} \cdot \sqrt{x^2}\)[/tex]
- [tex]\(\sqrt{72}\)[/tex] can be simplified as [tex]\(\sqrt{36 \cdot 2} = \sqrt{36} \cdot \sqrt{2} = 6\sqrt{2}\)[/tex]
- [tex]\(\sqrt{x^2} = x\)[/tex]
- Thus, [tex]\(\sqrt{72 x^2} = 6\sqrt{2} \cdot x\)[/tex]
Now, let's compare the simplified forms to check for like radicals:
1. [tex]\(\sqrt{50 x^2}\)[/tex] simplifies to [tex]\(5\sqrt{2} \cdot x\)[/tex]
2. [tex]\(\sqrt{32 x}\)[/tex] simplifies to [tex]\(4\sqrt{2} \cdot \sqrt{x}\)[/tex]
3. [tex]\(\sqrt{18 n}\)[/tex] simplifies to [tex]\(3\sqrt{2} \cdot \sqrt{n}\)[/tex]
4. [tex]\(\sqrt{72 x^2}\)[/tex] simplifies to [tex]\(6\sqrt{2} \cdot x\)[/tex]
For radicals to be like, their radicands must be identical. In this case:
- [tex]\(5\sqrt{2} \cdot x\)[/tex] and [tex]\(6\sqrt{2} \cdot x\)[/tex] both have [tex]\(\sqrt{2}\cdot x\)[/tex] as a part of the expression but differ by coefficients 5 and 6. Despite simplifying to show similar forms internally, they cannot be directly combined as 'like' radicals.
Hence, none of these simplified radical expressions are like radicals after simplification.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.