Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Select all that are like radicals after simplifying:

[tex]\[
\sqrt{50x^2}
\][/tex]
[tex]\[
\sqrt{32x}
\][/tex]
[tex]\[
\sqrt{18n}
\][/tex]
[tex]\[
\sqrt{72x^2}
\][/tex]


Sagot :

To determine which radicals are like after simplifying, let's simplify each of the given radical expressions step-by-step.

1. Simplify [tex]\(\sqrt{50 x^2}\)[/tex]:
- [tex]\(\sqrt{50 x^2} = \sqrt{50} \cdot \sqrt{x^2}\)[/tex]
- [tex]\(\sqrt{50}\)[/tex] can be simplified as [tex]\(\sqrt{25 \cdot 2} = \sqrt{25} \cdot \sqrt{2} = 5\sqrt{2}\)[/tex]
- [tex]\(\sqrt{x^2} = x\)[/tex]
- Thus, [tex]\(\sqrt{50 x^2} = 5\sqrt{2} \cdot x\)[/tex]

2. Simplify [tex]\(\sqrt{32 x}\)[/tex]:
- [tex]\(\sqrt{32 x} = \sqrt{32} \cdot \sqrt{x}\)[/tex]
- [tex]\(\sqrt{32}\)[/tex] can be simplified as [tex]\(\sqrt{16 \cdot 2} = \sqrt{16} \cdot \sqrt{2} = 4\sqrt{2}\)[/tex]
- Thus, [tex]\(\sqrt{32 x} = 4\sqrt{2} \cdot \sqrt{x}\)[/tex]

3. Simplify [tex]\(\sqrt{18 n}\)[/tex]:
- [tex]\(\sqrt{18 n} = \sqrt{18} \cdot \sqrt{n}\)[/tex]
- [tex]\(\sqrt{18}\)[/tex] can be simplified as [tex]\(\sqrt{9 \cdot 2} = \sqrt{9} \cdot \sqrt{2} = 3\sqrt{2}\)[/tex]
- Thus, [tex]\(\sqrt{18 n} = 3\sqrt{2} \cdot \sqrt{n}\)[/tex]

4. Simplify [tex]\(\sqrt{72 x^2}\)[/tex]:
- [tex]\(\sqrt{72 x^2} = \sqrt{72} \cdot \sqrt{x^2}\)[/tex]
- [tex]\(\sqrt{72}\)[/tex] can be simplified as [tex]\(\sqrt{36 \cdot 2} = \sqrt{36} \cdot \sqrt{2} = 6\sqrt{2}\)[/tex]
- [tex]\(\sqrt{x^2} = x\)[/tex]
- Thus, [tex]\(\sqrt{72 x^2} = 6\sqrt{2} \cdot x\)[/tex]

Now, let's compare the simplified forms to check for like radicals:

1. [tex]\(\sqrt{50 x^2}\)[/tex] simplifies to [tex]\(5\sqrt{2} \cdot x\)[/tex]
2. [tex]\(\sqrt{32 x}\)[/tex] simplifies to [tex]\(4\sqrt{2} \cdot \sqrt{x}\)[/tex]
3. [tex]\(\sqrt{18 n}\)[/tex] simplifies to [tex]\(3\sqrt{2} \cdot \sqrt{n}\)[/tex]
4. [tex]\(\sqrt{72 x^2}\)[/tex] simplifies to [tex]\(6\sqrt{2} \cdot x\)[/tex]

For radicals to be like, their radicands must be identical. In this case:
- [tex]\(5\sqrt{2} \cdot x\)[/tex] and [tex]\(6\sqrt{2} \cdot x\)[/tex] both have [tex]\(\sqrt{2}\cdot x\)[/tex] as a part of the expression but differ by coefficients 5 and 6. Despite simplifying to show similar forms internally, they cannot be directly combined as 'like' radicals.

Hence, none of these simplified radical expressions are like radicals after simplification.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.