Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine for which value of [tex]\( n \)[/tex] the terminal side of the angle [tex]\( 468n \)[/tex] degrees in standard position falls on the [tex]\( x \)[/tex]-axis, we need to find when the angle is either [tex]\( 0^{\circ} \)[/tex] or [tex]\( 180^{\circ} \)[/tex] after reducing the angle to be within 0 to 360 degrees.
Here are the steps to solve the problem:
1. Calculate [tex]\( 468n \)[/tex] for each given [tex]\( n \)[/tex]:
- For [tex]\( n = 4 \)[/tex], the angle is [tex]\( 468 \times 4 = 1872 \)[/tex] degrees.
- For [tex]\( n = 5 \)[/tex], the angle is [tex]\( 468 \times 5 = 2340 \)[/tex] degrees.
- For [tex]\( n = 6 \)[/tex], the angle is [tex]\( 468 \times 6 = 2808 \)[/tex] degrees.
- For [tex]\( n = 7 \)[/tex], the angle is [tex]\( 468 \times 7 = 3276 \)[/tex] degrees.
2. Reduce each angle by taking modulo 360, which gives the angle within the standard 0 to 360 degrees range.
- For [tex]\( n = 4 \)[/tex], [tex]\( 1872 \mod 360 = 192 \)[/tex] degrees.
- For [tex]\( n = 5 \)[/tex], [tex]\( 2340 \mod 360 = 180 \)[/tex] degrees.
- For [tex]\( n = 6 \)[/tex], [tex]\( 2808 \mod 360 = 288 \)[/tex] degrees.
- For [tex]\( n = 7 \)[/tex], [tex]\( 3276 \mod 360 = 36 \)[/tex] degrees.
3. Check which angle lies on the [tex]\( x \)[/tex]-axis.
For an angle to fall on the [tex]\( x \)[/tex]-axis, it must be either [tex]\( 0^{\circ} \)[/tex] or [tex]\( 180^{\circ} \)[/tex].
- For [tex]\( n = 4 \)[/tex], the reduced angle is [tex]\( 192 \)[/tex], which is not on the [tex]\( x \)[/tex]-axis.
- For [tex]\( n = 5 \)[/tex], the reduced angle is [tex]\( 180 \)[/tex], which lies on the [tex]\( x \)[/tex]-axis.
- For [tex]\( n = 6 \)[/tex], the reduced angle is [tex]\( 288 \)[/tex], which is not on the [tex]\( x \)[/tex]-axis.
- For [tex]\( n = 7 \)[/tex], the reduced angle is [tex]\( 36 \)[/tex], which is not on the [tex]\( x \)[/tex]-axis.
Therefore, the value of [tex]\( n \)[/tex] for which the angle [tex]\( 468n \)[/tex] degrees falls on the [tex]\( x \)[/tex]-axis is [tex]\( n = 5 \)[/tex].
Here are the steps to solve the problem:
1. Calculate [tex]\( 468n \)[/tex] for each given [tex]\( n \)[/tex]:
- For [tex]\( n = 4 \)[/tex], the angle is [tex]\( 468 \times 4 = 1872 \)[/tex] degrees.
- For [tex]\( n = 5 \)[/tex], the angle is [tex]\( 468 \times 5 = 2340 \)[/tex] degrees.
- For [tex]\( n = 6 \)[/tex], the angle is [tex]\( 468 \times 6 = 2808 \)[/tex] degrees.
- For [tex]\( n = 7 \)[/tex], the angle is [tex]\( 468 \times 7 = 3276 \)[/tex] degrees.
2. Reduce each angle by taking modulo 360, which gives the angle within the standard 0 to 360 degrees range.
- For [tex]\( n = 4 \)[/tex], [tex]\( 1872 \mod 360 = 192 \)[/tex] degrees.
- For [tex]\( n = 5 \)[/tex], [tex]\( 2340 \mod 360 = 180 \)[/tex] degrees.
- For [tex]\( n = 6 \)[/tex], [tex]\( 2808 \mod 360 = 288 \)[/tex] degrees.
- For [tex]\( n = 7 \)[/tex], [tex]\( 3276 \mod 360 = 36 \)[/tex] degrees.
3. Check which angle lies on the [tex]\( x \)[/tex]-axis.
For an angle to fall on the [tex]\( x \)[/tex]-axis, it must be either [tex]\( 0^{\circ} \)[/tex] or [tex]\( 180^{\circ} \)[/tex].
- For [tex]\( n = 4 \)[/tex], the reduced angle is [tex]\( 192 \)[/tex], which is not on the [tex]\( x \)[/tex]-axis.
- For [tex]\( n = 5 \)[/tex], the reduced angle is [tex]\( 180 \)[/tex], which lies on the [tex]\( x \)[/tex]-axis.
- For [tex]\( n = 6 \)[/tex], the reduced angle is [tex]\( 288 \)[/tex], which is not on the [tex]\( x \)[/tex]-axis.
- For [tex]\( n = 7 \)[/tex], the reduced angle is [tex]\( 36 \)[/tex], which is not on the [tex]\( x \)[/tex]-axis.
Therefore, the value of [tex]\( n \)[/tex] for which the angle [tex]\( 468n \)[/tex] degrees falls on the [tex]\( x \)[/tex]-axis is [tex]\( n = 5 \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.