Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine for which value of [tex]\( n \)[/tex] the terminal side of the angle [tex]\( 468n \)[/tex] degrees in standard position falls on the [tex]\( x \)[/tex]-axis, we need to find when the angle is either [tex]\( 0^{\circ} \)[/tex] or [tex]\( 180^{\circ} \)[/tex] after reducing the angle to be within 0 to 360 degrees.
Here are the steps to solve the problem:
1. Calculate [tex]\( 468n \)[/tex] for each given [tex]\( n \)[/tex]:
- For [tex]\( n = 4 \)[/tex], the angle is [tex]\( 468 \times 4 = 1872 \)[/tex] degrees.
- For [tex]\( n = 5 \)[/tex], the angle is [tex]\( 468 \times 5 = 2340 \)[/tex] degrees.
- For [tex]\( n = 6 \)[/tex], the angle is [tex]\( 468 \times 6 = 2808 \)[/tex] degrees.
- For [tex]\( n = 7 \)[/tex], the angle is [tex]\( 468 \times 7 = 3276 \)[/tex] degrees.
2. Reduce each angle by taking modulo 360, which gives the angle within the standard 0 to 360 degrees range.
- For [tex]\( n = 4 \)[/tex], [tex]\( 1872 \mod 360 = 192 \)[/tex] degrees.
- For [tex]\( n = 5 \)[/tex], [tex]\( 2340 \mod 360 = 180 \)[/tex] degrees.
- For [tex]\( n = 6 \)[/tex], [tex]\( 2808 \mod 360 = 288 \)[/tex] degrees.
- For [tex]\( n = 7 \)[/tex], [tex]\( 3276 \mod 360 = 36 \)[/tex] degrees.
3. Check which angle lies on the [tex]\( x \)[/tex]-axis.
For an angle to fall on the [tex]\( x \)[/tex]-axis, it must be either [tex]\( 0^{\circ} \)[/tex] or [tex]\( 180^{\circ} \)[/tex].
- For [tex]\( n = 4 \)[/tex], the reduced angle is [tex]\( 192 \)[/tex], which is not on the [tex]\( x \)[/tex]-axis.
- For [tex]\( n = 5 \)[/tex], the reduced angle is [tex]\( 180 \)[/tex], which lies on the [tex]\( x \)[/tex]-axis.
- For [tex]\( n = 6 \)[/tex], the reduced angle is [tex]\( 288 \)[/tex], which is not on the [tex]\( x \)[/tex]-axis.
- For [tex]\( n = 7 \)[/tex], the reduced angle is [tex]\( 36 \)[/tex], which is not on the [tex]\( x \)[/tex]-axis.
Therefore, the value of [tex]\( n \)[/tex] for which the angle [tex]\( 468n \)[/tex] degrees falls on the [tex]\( x \)[/tex]-axis is [tex]\( n = 5 \)[/tex].
Here are the steps to solve the problem:
1. Calculate [tex]\( 468n \)[/tex] for each given [tex]\( n \)[/tex]:
- For [tex]\( n = 4 \)[/tex], the angle is [tex]\( 468 \times 4 = 1872 \)[/tex] degrees.
- For [tex]\( n = 5 \)[/tex], the angle is [tex]\( 468 \times 5 = 2340 \)[/tex] degrees.
- For [tex]\( n = 6 \)[/tex], the angle is [tex]\( 468 \times 6 = 2808 \)[/tex] degrees.
- For [tex]\( n = 7 \)[/tex], the angle is [tex]\( 468 \times 7 = 3276 \)[/tex] degrees.
2. Reduce each angle by taking modulo 360, which gives the angle within the standard 0 to 360 degrees range.
- For [tex]\( n = 4 \)[/tex], [tex]\( 1872 \mod 360 = 192 \)[/tex] degrees.
- For [tex]\( n = 5 \)[/tex], [tex]\( 2340 \mod 360 = 180 \)[/tex] degrees.
- For [tex]\( n = 6 \)[/tex], [tex]\( 2808 \mod 360 = 288 \)[/tex] degrees.
- For [tex]\( n = 7 \)[/tex], [tex]\( 3276 \mod 360 = 36 \)[/tex] degrees.
3. Check which angle lies on the [tex]\( x \)[/tex]-axis.
For an angle to fall on the [tex]\( x \)[/tex]-axis, it must be either [tex]\( 0^{\circ} \)[/tex] or [tex]\( 180^{\circ} \)[/tex].
- For [tex]\( n = 4 \)[/tex], the reduced angle is [tex]\( 192 \)[/tex], which is not on the [tex]\( x \)[/tex]-axis.
- For [tex]\( n = 5 \)[/tex], the reduced angle is [tex]\( 180 \)[/tex], which lies on the [tex]\( x \)[/tex]-axis.
- For [tex]\( n = 6 \)[/tex], the reduced angle is [tex]\( 288 \)[/tex], which is not on the [tex]\( x \)[/tex]-axis.
- For [tex]\( n = 7 \)[/tex], the reduced angle is [tex]\( 36 \)[/tex], which is not on the [tex]\( x \)[/tex]-axis.
Therefore, the value of [tex]\( n \)[/tex] for which the angle [tex]\( 468n \)[/tex] degrees falls on the [tex]\( x \)[/tex]-axis is [tex]\( n = 5 \)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.