Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the range of the function [tex]\(y = -3 \sin (x) - 4\)[/tex], we need to analyze the behavior of the sine function and how it affects the expression as a whole.
1. Understand the basic sine function:
The sine function, [tex]\(\sin(x)\)[/tex], oscillates between -1 and 1 for all real numbers [tex]\(x\)[/tex]. This means that the range of [tex]\(\sin(x)\)[/tex] is:
[tex]\[ -1 \leq \sin(x) \leq 1 \][/tex]
2. Transform the sine function:
The given function is [tex]\(y = -3 \sin(x) - 4\)[/tex], which involves scaling and shifting the sine function.
- The multiplication by -3 scales the sine function by 3 and flips it vertically. So, the range of [tex]\(-3 \sin(x)\)[/tex] becomes:
[tex]\[ -3 \leq -3 \sin(x) \leq 3 \][/tex]
- Next, subtracting 4 shifts the entire range down by 4 units. Thus, the range of [tex]\(-3 \sin(x) - 4\)[/tex] is:
[tex]\[ (-3 - 4) \leq -3 \sin(x) - 4 \leq (3 - 4) \][/tex]
3. Simplify the range:
Simplify the bounds calculated above:
[tex]\[ -7 \leq -3 \sin(x) - 4 \leq -1 \][/tex]
Therefore, the range of the function [tex]\(y = -3 \sin (x) - 4\)[/tex] is:
[tex]\[ -7 \leq y \leq -1 \][/tex]
Thus, the correct answer is:
[tex]\[ \text{all real numbers } -7 \leq y \leq -1 \][/tex]
1. Understand the basic sine function:
The sine function, [tex]\(\sin(x)\)[/tex], oscillates between -1 and 1 for all real numbers [tex]\(x\)[/tex]. This means that the range of [tex]\(\sin(x)\)[/tex] is:
[tex]\[ -1 \leq \sin(x) \leq 1 \][/tex]
2. Transform the sine function:
The given function is [tex]\(y = -3 \sin(x) - 4\)[/tex], which involves scaling and shifting the sine function.
- The multiplication by -3 scales the sine function by 3 and flips it vertically. So, the range of [tex]\(-3 \sin(x)\)[/tex] becomes:
[tex]\[ -3 \leq -3 \sin(x) \leq 3 \][/tex]
- Next, subtracting 4 shifts the entire range down by 4 units. Thus, the range of [tex]\(-3 \sin(x) - 4\)[/tex] is:
[tex]\[ (-3 - 4) \leq -3 \sin(x) - 4 \leq (3 - 4) \][/tex]
3. Simplify the range:
Simplify the bounds calculated above:
[tex]\[ -7 \leq -3 \sin(x) - 4 \leq -1 \][/tex]
Therefore, the range of the function [tex]\(y = -3 \sin (x) - 4\)[/tex] is:
[tex]\[ -7 \leq y \leq -1 \][/tex]
Thus, the correct answer is:
[tex]\[ \text{all real numbers } -7 \leq y \leq -1 \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.