Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the range of the function [tex]\(y = -3 \sin (x) - 4\)[/tex], we need to analyze the behavior of the sine function and how it affects the expression as a whole.
1. Understand the basic sine function:
The sine function, [tex]\(\sin(x)\)[/tex], oscillates between -1 and 1 for all real numbers [tex]\(x\)[/tex]. This means that the range of [tex]\(\sin(x)\)[/tex] is:
[tex]\[ -1 \leq \sin(x) \leq 1 \][/tex]
2. Transform the sine function:
The given function is [tex]\(y = -3 \sin(x) - 4\)[/tex], which involves scaling and shifting the sine function.
- The multiplication by -3 scales the sine function by 3 and flips it vertically. So, the range of [tex]\(-3 \sin(x)\)[/tex] becomes:
[tex]\[ -3 \leq -3 \sin(x) \leq 3 \][/tex]
- Next, subtracting 4 shifts the entire range down by 4 units. Thus, the range of [tex]\(-3 \sin(x) - 4\)[/tex] is:
[tex]\[ (-3 - 4) \leq -3 \sin(x) - 4 \leq (3 - 4) \][/tex]
3. Simplify the range:
Simplify the bounds calculated above:
[tex]\[ -7 \leq -3 \sin(x) - 4 \leq -1 \][/tex]
Therefore, the range of the function [tex]\(y = -3 \sin (x) - 4\)[/tex] is:
[tex]\[ -7 \leq y \leq -1 \][/tex]
Thus, the correct answer is:
[tex]\[ \text{all real numbers } -7 \leq y \leq -1 \][/tex]
1. Understand the basic sine function:
The sine function, [tex]\(\sin(x)\)[/tex], oscillates between -1 and 1 for all real numbers [tex]\(x\)[/tex]. This means that the range of [tex]\(\sin(x)\)[/tex] is:
[tex]\[ -1 \leq \sin(x) \leq 1 \][/tex]
2. Transform the sine function:
The given function is [tex]\(y = -3 \sin(x) - 4\)[/tex], which involves scaling and shifting the sine function.
- The multiplication by -3 scales the sine function by 3 and flips it vertically. So, the range of [tex]\(-3 \sin(x)\)[/tex] becomes:
[tex]\[ -3 \leq -3 \sin(x) \leq 3 \][/tex]
- Next, subtracting 4 shifts the entire range down by 4 units. Thus, the range of [tex]\(-3 \sin(x) - 4\)[/tex] is:
[tex]\[ (-3 - 4) \leq -3 \sin(x) - 4 \leq (3 - 4) \][/tex]
3. Simplify the range:
Simplify the bounds calculated above:
[tex]\[ -7 \leq -3 \sin(x) - 4 \leq -1 \][/tex]
Therefore, the range of the function [tex]\(y = -3 \sin (x) - 4\)[/tex] is:
[tex]\[ -7 \leq y \leq -1 \][/tex]
Thus, the correct answer is:
[tex]\[ \text{all real numbers } -7 \leq y \leq -1 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.