At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the domain and range of the exponential function [tex]\( F(x) = 3^x + 2 \)[/tex], let's analyze the function step-by-step.
### Step 1: Determine the Domain
The domain of a function consists of all the possible input values (x-values) for which the function is defined. An exponential function of the form [tex]\( 3^x \)[/tex] is defined for all real numbers because for any real number [tex]\( x \)[/tex], [tex]\( 3^x \)[/tex] will produce a valid output.
Adding 2 to [tex]\( 3^x \)[/tex] does not change the domain, so the domain of the function [tex]\( F(x) = 3^x + 2 \)[/tex] is:
[tex]\[ \text{All real numbers} \][/tex]
### Step 2: Determine the Range
The range of a function consists of all possible output values (y-values) the function can take.
1. Start by examining the simpler function [tex]\( G(x) = 3^x \)[/tex]. The exponential function [tex]\( 3^x \)[/tex] produces outputs which are always positive. As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( 3^x \)[/tex] approaches 0 from the positive side. As [tex]\( x \)[/tex] increases, [tex]\( 3^x \)[/tex] increases rapidly without bound. Hence, the range of [tex]\( 3^x \)[/tex] is:
[tex]\[ (0, \infty) \][/tex]
2. Now consider the function [tex]\( F(x) = 3^x + 2 \)[/tex]. Adding 2 to [tex]\( 3^x \)[/tex] shifts the entire graph of [tex]\( 3^x \)[/tex] upwards by 2 units. Therefore, the smallest value [tex]\( 3^x \)[/tex] can get close to is 0, making the smallest value [tex]\( 3^x + 2 \)[/tex] can get close to is 2.
Since [tex]\( 3^x + 2 \)[/tex] never actually reaches 2 but it can get arbitrarily close to 2, and it can also increase without bound as [tex]\( x \)[/tex] increases, the range of the function [tex]\( F(x) = 3^x + 2 \)[/tex] is:
[tex]\[ (2, \infty) \][/tex]
In other words:
[tex]\[ \text{All real numbers greater than 2} \][/tex]
### Conclusion
Given our analysis:
- The Domain of [tex]\( F(x) = 3^x + 2 \)[/tex] is all real numbers.
- The Range of [tex]\( F(x) = 3^x + 2 \)[/tex] is all real numbers greater than 2.
Thus, the correct answer is:
D. Domain: All real numbers Range: All real numbers greater than 2
### Step 1: Determine the Domain
The domain of a function consists of all the possible input values (x-values) for which the function is defined. An exponential function of the form [tex]\( 3^x \)[/tex] is defined for all real numbers because for any real number [tex]\( x \)[/tex], [tex]\( 3^x \)[/tex] will produce a valid output.
Adding 2 to [tex]\( 3^x \)[/tex] does not change the domain, so the domain of the function [tex]\( F(x) = 3^x + 2 \)[/tex] is:
[tex]\[ \text{All real numbers} \][/tex]
### Step 2: Determine the Range
The range of a function consists of all possible output values (y-values) the function can take.
1. Start by examining the simpler function [tex]\( G(x) = 3^x \)[/tex]. The exponential function [tex]\( 3^x \)[/tex] produces outputs which are always positive. As [tex]\( x \)[/tex] approaches negative infinity, [tex]\( 3^x \)[/tex] approaches 0 from the positive side. As [tex]\( x \)[/tex] increases, [tex]\( 3^x \)[/tex] increases rapidly without bound. Hence, the range of [tex]\( 3^x \)[/tex] is:
[tex]\[ (0, \infty) \][/tex]
2. Now consider the function [tex]\( F(x) = 3^x + 2 \)[/tex]. Adding 2 to [tex]\( 3^x \)[/tex] shifts the entire graph of [tex]\( 3^x \)[/tex] upwards by 2 units. Therefore, the smallest value [tex]\( 3^x \)[/tex] can get close to is 0, making the smallest value [tex]\( 3^x + 2 \)[/tex] can get close to is 2.
Since [tex]\( 3^x + 2 \)[/tex] never actually reaches 2 but it can get arbitrarily close to 2, and it can also increase without bound as [tex]\( x \)[/tex] increases, the range of the function [tex]\( F(x) = 3^x + 2 \)[/tex] is:
[tex]\[ (2, \infty) \][/tex]
In other words:
[tex]\[ \text{All real numbers greater than 2} \][/tex]
### Conclusion
Given our analysis:
- The Domain of [tex]\( F(x) = 3^x + 2 \)[/tex] is all real numbers.
- The Range of [tex]\( F(x) = 3^x + 2 \)[/tex] is all real numbers greater than 2.
Thus, the correct answer is:
D. Domain: All real numbers Range: All real numbers greater than 2
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.