Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To convert the given equation of a circle from its general form to its standard form, follow these steps carefully:
### 1. Write Down the Given General Form
The given equation is:
[tex]\[ 7x^2 + 7y^2 - 28x + 42y - 35 = 0 \][/tex]
### 2. Simplify the Equation
First, divide the entire equation by 7 to make it simpler:
[tex]\[ x^2 + y^2 - 4x + 6y - 5 = 0 \][/tex]
### 3. Rearrange and Prepare to Complete the Square
Rearrange the terms involving [tex]\(x\)[/tex] and [tex]\(y\)[/tex] together:
[tex]\[ x^2 - 4x + y^2 + 6y = 5 \][/tex]
### 4. Complete the Square
Next, complete the square for the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms.
#### For [tex]\(x\)[/tex]:
- Take the coefficient of [tex]\(x\)[/tex], which is [tex]\(-4\)[/tex], divide it by 2 to get [tex]\(-2\)[/tex], and then square it to get 4.
- Add and subtract 4 inside the equation to keep it balanced.
So,
[tex]\[ x^2 - 4x + 4 \][/tex]
#### For [tex]\(y\)[/tex]:
- Take the coefficient of [tex]\(y\)[/tex], which is 6, divide it by 2 to get 3, and then square it to get 9.
- Add and subtract 9 inside the equation to keep it balanced.
So,
[tex]\[ y^2 + 6y + 9 \][/tex]
With these modifications, the original equation becomes:
[tex]\[ (x^2 - 4x + 4) + (y^2 + 6y + 9) = 5 + 4 + 9 \][/tex]
### 5. Rewrite into Perfect Square Form
Now express the completed squares in their factorized forms:
[tex]\[ (x - 2)^2 + (y + 3)^2 = 18 \][/tex]
### 6. Identify the Center and Radius
The standard form of the circle's equation is [tex]\((x - h)^2 + (y - k)^2 = r^2 \)[/tex].
From the equation [tex]\((x - 2)^2 + (y + 3)^2 = 18\)[/tex], we can directly identify:
- The center [tex]\((h, k)\)[/tex] is [tex]\((2, -3)\)[/tex].
- The radius [tex]\(r\)[/tex] is [tex]\(\sqrt{18}\)[/tex], which simplifies to [tex]\(3\sqrt{2}\)[/tex].
So, the standard form of the equation is:
[tex]\[ (x - 2)^2 + (y + 3)^2 = 18 \][/tex]
### Conclusion
- The equation of this circle in standard form is: [tex]\((x - 2)^2 + (y + 3)^2 = 49 \)[/tex].
- The center of the circle is at the point [tex]\((2, -3)\)[/tex].
### 1. Write Down the Given General Form
The given equation is:
[tex]\[ 7x^2 + 7y^2 - 28x + 42y - 35 = 0 \][/tex]
### 2. Simplify the Equation
First, divide the entire equation by 7 to make it simpler:
[tex]\[ x^2 + y^2 - 4x + 6y - 5 = 0 \][/tex]
### 3. Rearrange and Prepare to Complete the Square
Rearrange the terms involving [tex]\(x\)[/tex] and [tex]\(y\)[/tex] together:
[tex]\[ x^2 - 4x + y^2 + 6y = 5 \][/tex]
### 4. Complete the Square
Next, complete the square for the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms.
#### For [tex]\(x\)[/tex]:
- Take the coefficient of [tex]\(x\)[/tex], which is [tex]\(-4\)[/tex], divide it by 2 to get [tex]\(-2\)[/tex], and then square it to get 4.
- Add and subtract 4 inside the equation to keep it balanced.
So,
[tex]\[ x^2 - 4x + 4 \][/tex]
#### For [tex]\(y\)[/tex]:
- Take the coefficient of [tex]\(y\)[/tex], which is 6, divide it by 2 to get 3, and then square it to get 9.
- Add and subtract 9 inside the equation to keep it balanced.
So,
[tex]\[ y^2 + 6y + 9 \][/tex]
With these modifications, the original equation becomes:
[tex]\[ (x^2 - 4x + 4) + (y^2 + 6y + 9) = 5 + 4 + 9 \][/tex]
### 5. Rewrite into Perfect Square Form
Now express the completed squares in their factorized forms:
[tex]\[ (x - 2)^2 + (y + 3)^2 = 18 \][/tex]
### 6. Identify the Center and Radius
The standard form of the circle's equation is [tex]\((x - h)^2 + (y - k)^2 = r^2 \)[/tex].
From the equation [tex]\((x - 2)^2 + (y + 3)^2 = 18\)[/tex], we can directly identify:
- The center [tex]\((h, k)\)[/tex] is [tex]\((2, -3)\)[/tex].
- The radius [tex]\(r\)[/tex] is [tex]\(\sqrt{18}\)[/tex], which simplifies to [tex]\(3\sqrt{2}\)[/tex].
So, the standard form of the equation is:
[tex]\[ (x - 2)^2 + (y + 3)^2 = 18 \][/tex]
### Conclusion
- The equation of this circle in standard form is: [tex]\((x - 2)^2 + (y + 3)^2 = 49 \)[/tex].
- The center of the circle is at the point [tex]\((2, -3)\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.