Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's solve the given problem step-by-step for the decomposition of [tex]\( \text{N}_2\text{O}_5 \)[/tex] using the information provided:
### Step 1: Write down the given values
- Rate constant, [tex]\( k = 6.82 \times 10^{-3} \, \text{s}^{-1} \)[/tex]
- Initial amount of [tex]\( \text{N}_2\text{O}_5 \)[/tex], [tex]\( \text{initial\_mol} = 0.300 \, \text{mol} \)[/tex]
- Volume of the container, [tex]\( V = 0.500 \, \text{L} \)[/tex]
- Time, [tex]\( t = 1.5 \, \text{min} \)[/tex]
### Step 2: Convert the time from minutes to seconds
Since the rate constant [tex]\( k \)[/tex] is in units of [tex]\(\text{s}^{-1}\)[/tex], we need to convert the time to seconds:
[tex]\[ \text{time\_s} = t \times 60 \, \text{s/min} = 1.5 \, \text{min} \times 60 = 90 \, \text{s} \][/tex]
### Step 3: Calculate initial concentration
The initial concentration ([tex]\([A_0]\)[/tex]) of [tex]\( \text{N}_2\text{O}_5 \)[/tex] can be calculated using the formula:
[tex]\[ \text{concentration\_initial} = \frac{\text{initial\_mol}}{V} = \frac{0.300 \, \text{mol}}{0.500 \, \text{L}} = 0.600 \, \text{mol/L} \][/tex]
### Step 4: Use the first-order reaction formula
The formula for a first-order reaction is:
[tex]\[ [A] = [A_0] \cdot e^{-kt} \][/tex]
where:
- [tex]\([A_0]\)[/tex] is the initial concentration,
- [tex]\( k \)[/tex] is the rate constant, and
- [tex]\( t \)[/tex] is the time.
Plugging in the values we have:
[tex]\[ [A] = 0.600 \, \text{mol/L} \cdot e^{- (6.82 \times 10^{-3} \, \text{s}^{-1} \times 90 \, \text{s})} \][/tex]
### Step 5: Calculate the remaining concentration
[tex]\[ [A] \approx 0.600 \, \text{mol/L} \cdot e^{-0.6138} \][/tex]
Using a calculator or an exponentiation function:
[tex]\[ [A] \approx 0.3247740322805302 \, \text{mol/L} \][/tex]
### Step 6: Find the remaining moles
Now, we need to find how many moles of [tex]\( \text{N}_2\text{O}_5 \)[/tex] remain in the container after 1.5 minutes. This is given by:
[tex]\[ \text{remaining\_mol} = [A] \cdot V = 0.3247740322805302 \, \text{mol/L} \cdot 0.500 \, \text{L} = 0.1623870161402651 \, \text{mol} \][/tex]
### Answer
The number of moles of [tex]\( \text{N}_2\text{O}_5 \)[/tex] remaining after 1.5 minutes is approximately [tex]\( 0.1624 \, \text{mol} \)[/tex].
### Step 1: Write down the given values
- Rate constant, [tex]\( k = 6.82 \times 10^{-3} \, \text{s}^{-1} \)[/tex]
- Initial amount of [tex]\( \text{N}_2\text{O}_5 \)[/tex], [tex]\( \text{initial\_mol} = 0.300 \, \text{mol} \)[/tex]
- Volume of the container, [tex]\( V = 0.500 \, \text{L} \)[/tex]
- Time, [tex]\( t = 1.5 \, \text{min} \)[/tex]
### Step 2: Convert the time from minutes to seconds
Since the rate constant [tex]\( k \)[/tex] is in units of [tex]\(\text{s}^{-1}\)[/tex], we need to convert the time to seconds:
[tex]\[ \text{time\_s} = t \times 60 \, \text{s/min} = 1.5 \, \text{min} \times 60 = 90 \, \text{s} \][/tex]
### Step 3: Calculate initial concentration
The initial concentration ([tex]\([A_0]\)[/tex]) of [tex]\( \text{N}_2\text{O}_5 \)[/tex] can be calculated using the formula:
[tex]\[ \text{concentration\_initial} = \frac{\text{initial\_mol}}{V} = \frac{0.300 \, \text{mol}}{0.500 \, \text{L}} = 0.600 \, \text{mol/L} \][/tex]
### Step 4: Use the first-order reaction formula
The formula for a first-order reaction is:
[tex]\[ [A] = [A_0] \cdot e^{-kt} \][/tex]
where:
- [tex]\([A_0]\)[/tex] is the initial concentration,
- [tex]\( k \)[/tex] is the rate constant, and
- [tex]\( t \)[/tex] is the time.
Plugging in the values we have:
[tex]\[ [A] = 0.600 \, \text{mol/L} \cdot e^{- (6.82 \times 10^{-3} \, \text{s}^{-1} \times 90 \, \text{s})} \][/tex]
### Step 5: Calculate the remaining concentration
[tex]\[ [A] \approx 0.600 \, \text{mol/L} \cdot e^{-0.6138} \][/tex]
Using a calculator or an exponentiation function:
[tex]\[ [A] \approx 0.3247740322805302 \, \text{mol/L} \][/tex]
### Step 6: Find the remaining moles
Now, we need to find how many moles of [tex]\( \text{N}_2\text{O}_5 \)[/tex] remain in the container after 1.5 minutes. This is given by:
[tex]\[ \text{remaining\_mol} = [A] \cdot V = 0.3247740322805302 \, \text{mol/L} \cdot 0.500 \, \text{L} = 0.1623870161402651 \, \text{mol} \][/tex]
### Answer
The number of moles of [tex]\( \text{N}_2\text{O}_5 \)[/tex] remaining after 1.5 minutes is approximately [tex]\( 0.1624 \, \text{mol} \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.