Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which line is perpendicular to a line with a slope of [tex]\(-\frac{5}{6}\)[/tex], we need to find the slope of the perpendicular line.
1. Understand the Slope Relationship:
- The slope of a line perpendicular to another line is the negative reciprocal of the given line's slope.
- The given slope is [tex]\(-\frac{5}{6}\)[/tex].
2. Calculate the Negative Reciprocal:
- The reciprocal of [tex]\(\frac{A}{B}\)[/tex] is [tex]\(\frac{B}{A}\)[/tex].
- Thus, the reciprocal of [tex]\(-\frac{5}{6}\)[/tex] is [tex]\(-\frac{6}{5}\)[/tex].
- Taking the negative reciprocal, the negative of [tex]\(-\frac{6}{5}\)[/tex] gives us [tex]\(\frac{6}{5}\)[/tex].
3. Known Perpendicular Line Slope:
- The slope of the line that is perpendicular to a line with a slope of [tex]\(-\frac{5}{6}\)[/tex] is [tex]\(\frac{6}{5}\)[/tex].
4. Identifying the Correct Line:
- According to the problem data, Line [tex]\(JK\)[/tex] has a slope of [tex]\(\frac{6}{5}\)[/tex].
- Hence, Line [tex]\(JK\)[/tex] is the line that is perpendicular to the line with a slope of [tex]\(-\frac{5}{6}\)[/tex].
Therefore, among the options provided, line [tex]\(JK\)[/tex] is perpendicular to a line that has a slope of [tex]\(-\frac{5}{6}\)[/tex].
1. Understand the Slope Relationship:
- The slope of a line perpendicular to another line is the negative reciprocal of the given line's slope.
- The given slope is [tex]\(-\frac{5}{6}\)[/tex].
2. Calculate the Negative Reciprocal:
- The reciprocal of [tex]\(\frac{A}{B}\)[/tex] is [tex]\(\frac{B}{A}\)[/tex].
- Thus, the reciprocal of [tex]\(-\frac{5}{6}\)[/tex] is [tex]\(-\frac{6}{5}\)[/tex].
- Taking the negative reciprocal, the negative of [tex]\(-\frac{6}{5}\)[/tex] gives us [tex]\(\frac{6}{5}\)[/tex].
3. Known Perpendicular Line Slope:
- The slope of the line that is perpendicular to a line with a slope of [tex]\(-\frac{5}{6}\)[/tex] is [tex]\(\frac{6}{5}\)[/tex].
4. Identifying the Correct Line:
- According to the problem data, Line [tex]\(JK\)[/tex] has a slope of [tex]\(\frac{6}{5}\)[/tex].
- Hence, Line [tex]\(JK\)[/tex] is the line that is perpendicular to the line with a slope of [tex]\(-\frac{5}{6}\)[/tex].
Therefore, among the options provided, line [tex]\(JK\)[/tex] is perpendicular to a line that has a slope of [tex]\(-\frac{5}{6}\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.